34 research outputs found

    Biomimics of [FeFe]-hydrogenases with a pendant amine: Diphosphine complexes [Fe₂(CO)₄{μ-S(CH₂)nS}{κ²-(Ph₂PCH₂)₂NR}] (n = 2, 3; R = Me, Bn) towards H₂ oxidation catalysts

    Get PDF
    We report the synthesis and molecular structures of [FeFe]-ase biomimics [Fe2(CO)4{µ-S(CH2)nS}{κ2-(Ph2PCH2)2NR}] (1–4) (n = 2, 3; R = Me, Bn) and a comparative study of their protonation and redox chemistry, with the aim of assessing their activity as catalysts for H2 oxidation. They are prepared in good yields upon heating the hexacarbonyls and PCNCP ligands in toluene, a minor product of one reaction (n = 3, R = Bn) being pentacarbonyl [Fe2(CO)5(µ-pdt){Ph2PCH2N(H)Bn}] (5). Crystal structures show short Fe-Fe bonds (ca. 2.54 Å) with the diphosphine occupying basal-apical sites. Each undergoes a quasi-reversible one-electron oxidation and IR-SEC shows that this results in formation of a semi-bridging carbonyl. As has previously been observed, protonation products are solvent dependent, nitrogen being the favoured site of protonation site upon addition of one equivalent of HBF4.Et2O in d6-acetone, while hydride formation is favoured in CD2Cl2. However, the rate of N to Fe2 proton-transfer varies greatly with the nature of both the dithiolate-bridge and amine-substituent. Thus with NMe complexes (1–2) N-protonation is favoured in acetone affording a mixture of endo and exo isomers, while for NBn complexes (3–4) proton-transfer to afford the corresponding μ-hydride occurs in part (for 3 edt) or exclusively (for 4 pdt). In acetone, addition of a further equivalent of HBF4.Et2O generally does not lead to hydride formation, but in CD2Cl2 dications [Fe2(CO)4{µ-S(CH2)nS}(μ-H){κ2-(Ph2PCH2)2NHR}]2+ result, in which the diphosphine can adopt either dibasal or basal-apical positions. Proton-transfer from Fe2 to N has been previously identified as a required transformation for H2 oxidation, as has the accessibility of the all-terminal carbonyl isomer of cations [Fe2(CO)4{µ-S(CH2)nS}{κ2-(Ph2PCH2)2NR}]+. We have carried out a preliminary H2 oxidation study of 3, oxidation by Fc[BF4] in the presence of excess P(o-tolyl)3 affording [HP(o-tol)3][BF4], with a turnover of ca. 2.3 ± 0.1 mol of H2 consumed per mole of

    Titanium(IV)-induced cristobalite formation in titanosilicates and its potential impact on catalysis

    Get PDF
    Cristobalite, a crystalline form of silica, is shown to be formed within an amorphous titanosilicate, at previously unknown conditions. Mesoporous titanosilicate microspheres (MTSM) were synthesized as efficient catalysts for the epoxidation of cyclohexene with 'tert'-butyl hydroperoxide. High-resolution transmission electron microscopy revealed the presence of crystals in this predominantly amorphous material, after calcination at 750 °C. When calcined at 800 °C, the crystals were identified via PXRD as predominantly cristobalite, which possibly marks its first observation in titanosilicates at such a low temperature, without adding any alkali metals during synthesis. Catalytic experiments conducted with MTSM materials calcined at temperatures varying from 650 to 950 °C, reveal that the amount of cristobalite formed increases with temperature, and that it has a significant impact on the pore structure, and, remarkably, correlates with the catalytic activity of titanosilicates

    Influence of solvent in crystal engineering : a significant change to the order–disorder transition in ferrocene

    Get PDF
    We present the structure of a novel solvate adduct formed by dissolving ferrocene, FeCp2, in hexafluorobenzene, C6F6. This adduct demonstrates the remarkably strong interactions between the five-membered aromatic rings of FeCp2 and the six-membered aromatic ring of C6F6. These molecular interactions are sufficiently strong and anisotropic to change the temperature of the order–disorder transition of the ferrocene molecule from below ca. 164 K to RT. No solvate adduct could be formed between benzene and FeCp2. These observations will be of particular relevance to the crystal engineering community, whose goal is the design of solids with bespoke properties

    Synthesis of diaryl dithiocarbamate complexes of zinc and their uses as single source precursors for nanoscale ZnS

    Get PDF
    Diaryldithiocarbamate complexes, [Zn(S2CNAr2)2], have been prepared with a view to comparing their structures, reactivity and thermally-promoted degradation with respect to the well-studied dialkyl-derivatives. In the solid-state both [Zn{S2CN(p-tol)2}2] and [Zn{S2CN(p-anisyl)2}2] are monomeric with a distorted tetrahedral Zn(II) centre, but somewhat unexpectedly, the bulkier naphthyl-derivative [Zn{S2CN(2-nap)2}2]2 forms dimeric pairs with five-coordinate Zn(II) centres. Preliminary reactivity studies on [Zn{S2CN(p-tol)2}2] suggests that it binds amines and cyclic amines in a similar fashion to the dialkyl complexes and can achieve six-coordination as shown in the molecular structure of [Zn{S2CN(p-tol)2}2(2,2′-bipy)]. The thermal decomposition of [Zn{S2CN(p-tol)2}2] was studied in oleylamine solution by both heat-up and hot-injection methods. Nanorods of ZnS were produced in both cases with average dimensions of 17 × 2.1 nm and 11 × 3.5 nm respectively, being significantly shorter than those produced from [Zn(S2CNiBu2)2] under similar conditions. This is tentatively attributed to the differing rates of amine-exchange between diaryl- and dialkyl dithiocarbamate (DTC) complexes and/or their differing rates of DTC loss following amine-exchange. The solid-state decomposition of [Zn{S2CN(p-tol)2}2] has also been studied at 450 °C under argon affording irregular and large (10–300 µm) sheet-like particles of wurtzite

    Copper diaryl-dithiocarbamate complexes and their application as single source precursors (SSPs) for copper sulfide nanomaterials

    Get PDF
    Copper diaryl-dithiocarbamate (DTC) complexes have been prepared including [Cu(S2CNAr2)2], [Cu{S2CN(p-tolyl)2}]n and [Cu{S2CN(p-tolyl)2}(PPh3)2] and used as single source precursors to copper sulfide nanomaterials

    Hybrid Organic-Inorganic Coordination Complexes as Tunable Optical Response Materials.

    Get PDF
    Novel lead and bismuth dipyrido complexes have been synthesized and characterized by single-crystal X-ray diffraction, which shows their structures to be directed by highly oriented π-stacking of planar fully conjugated organic ligands. Optical band gaps are influenced by the identity of both the organic and inorganic component. Density functional theory calculations show optical excitation leads to exciton separation between inorganic and organic components. Using UV-vis, photoluminescence, and X-ray photoemission spectroscopies, we have determined the materials' frontier energy levels and show their suitability for photovoltaic device fabrication by use of electron- and hole-transport materials such as TiO2 and spiro-OMeTAD respectively. Such organic/inorganic hybrid materials promise greater electronic tunability than the inflexible methylammonium lead iodide structure through variation of both the metal and organic components

    Successful computationally directed templating of metastable pharmaceutical polymorphs

    Get PDF
    A strategy of using crystal structure prediction (CSP) methods to determine which, if any, isostructural template could facilitate the first crystallization of a predicted polymorph by vapor deposition is extended to the fenamate family. Mefenamic acid (MFA) and tolfenamic acid (TFA) are used as molecules with minimal chemical differences, whereas flufenamic acid (FFA) shows greater differences in the substituents. The three crystal energy landscapes were calculated, and periodic electronic structure calculations were used to confirm the thermodynamic plausibility of possible isostructural polymorphs to experimentally obtainable crystals of the other molecules. As predicted, a new polymorph, TFA form VI, was found by sublimation onto isomorphous MFA form I, using a recently developed technique. MFA and TFA form a continuous solid solution with the structure of MFA I and TFA VI at the limits, but the isomorphous MFA/FFA solid solution does not extended to a new polymorph of FFA. The novel solid solution structure of TFA and FFA was found, and a new isomorphous polymorph TFA VII was found by sublimation onto this new solid solution template. Sublimation of TFA onto a metal surface at the early stage of deposition gave TFA form VIII. We rationalize the formation of new polymorphs of only TFA

    Crystal and Molecular Structure and DFT Calculations of the Steroidal Oxime 6E-Hydroximino-androst-4-ene-3,17-dione (C<sub>19</sub>H<sub>25</sub>NO<sub>3</sub>) a Molecule with Antiproliferative Activity

    Get PDF
    The single crystal X-ray structure of the novel steroid derivative, 6E-hydroximino-androst-4-ene-3,17-dione ( C19H25NO3) (code name RB-499), possessing antiproliferative activity against various cell lines is presented. The analysis produced the following results: chemical formula C19H25NO3; Mr = 315.40; crystals are orthorhombic space group P212121 with Z = 4 molecules per unit cell with a = 6.2609(2), b = 12.5711(4), c = 20.0517(4) Å,Vc = 1578.18(7) Å3, crystal density Dc = 1.327 g/cm³. Structure determination was performed by direct methods, Fourier and full-matrix least-squares refinement. Hydrogens were located in the electron density and refined in position with isotropic thermal parameters. The final R-index was 0.0324for 3140 reflections with I > 2σ and 308 parameters. The Absolute Structure Parameter − 0.07(5) confirms the correct allocation of the absolute configuration. The presence of the double bond C=O at position 3 in Ring A has caused a distortion from the usual chair conformation and created an unusual distorted sofa conformation folded across an approximate m-plane through C(1)–C(4). Ring B is a distorted chair, its conformation being influenced by the presence of the C(6)=N(6)–O(6)H group in position 6. Ring C is a symmetrical chair. Ring D exhibits both a distorted mirror symmetry conformation [influenced by the C(17)=O(17) group] and a distorted twofold conformation. DFT calculations indicated some degree of flexibility in rings A, C and D with ring A showing the greatest variation in torsion angles. The crystal packing is governed by H-bonds involving O(3), O(6) and O(17). DFT calculations of bond distances and angles, optimized at the B3LYP/6–31++G(d,p) level, were in good agreement with the X-ray structure
    corecore