71 research outputs found

    Genomic and Evolutionary Features of the SPI-1 Type III Secretion System That Is Present in Xanthomonas albilineans but Is Not Essential for Xylem Colonization and Symptom Development of Sugarcane Leaf Scald

    Get PDF
    Xanthomonas albilineans is the causal agent of sugarcane leaf scald. Interestingly, this bacterium, which is not known to be insect or animal associated, possesses a type III secretion system (T3SS) belonging to the injectisome family Salmonella pathogenicity island 1 (SPI-1). The T3SS SPI-1 of X. albilineans shares only low similarity with other available T3SS SPI-1 sequences. Screening of a collection of 128 plant-pathogenic bacteria revealed that this T3SS SPI-1 is present in only two species of Xanthomonas: X. albilineans and X. axonopodis pv. phaseoli. Inoculation of sugarcane with knockout mutants showed that this system is not required by X. albilineans to spread within xylem vessels and to cause disease symptoms. This result was confirmed by the absence of this T3SS SPI-1 in an X. albilineans strain isolated from diseased sugarcane. To investigate the importance of the T3SS SPI-1 during the life cycle of X. albilineans, we analyzed T3SS SPI-1 sequences from 11 strains spanning the genetic diversity of this species. No nonsense mutations or frameshifting indels were observed in any of these strains, suggesting that the T3SS SPI-1 system is maintained within the species X. albilineans. Evolutionary features of T3SS SPI-1 based on phylogenetic, recombination, and selection analyses are discussed in the context of the possible functional importance of T3SS SPI-1 in the ecology of X. albilineans

    Functional characterization of two defensin isoforms of the hard tick Ixodes ricinus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune system of ticks is stimulated to produce many pharmacologically active molecules during feeding and especially during pathogen invasion. The family of cationic peptides - defensins - represents a specific group of antimicrobial compounds with six conserved cysteine residues in a molecule.</p> <p>Results</p> <p>Two isoforms of the defensin gene <it>(def1 </it>and <it>def2</it>) were identified in the European tick <it>Ixodes ricinus</it>. Expression of both genes was induced in different tick organs by a blood feeding or pathogen injection. We have tested the ability of synthetic peptides def1 and def2 to inhibit the growth or directly kill several pathogens. The antimicrobial activities (expressed as minimal inhibition concentration and minimal bactericidal concentration values) against Gram positive bacteria were confirmed, while Gram negative bacteria, yeast, Tick Borne Encephalitis and West Nile Viruses were shown to be insensitive. In addition to antimicrobial activities, the hemolysis effect of def1 and def2 on human erythrocytes was also established.</p> <p>Conclusions</p> <p>Although there is nothing known about the realistic concentration of defensins in <it>I. ricinus </it>tick body, these results suggest that defensins play an important role in defence against different pathogens. Moreover this is a first report of a one amino acid substitution in a defensins molecule and its impact on antimicrobial activity.</p

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed

    Chemical synthesis, antibacterial activity and conformation of diptericin, an 82-mer peptide originally isolated from insects

    No full text
    The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides
    corecore