3,958 research outputs found

    Teleportation using coupled oscillator states

    Get PDF
    We analyse the fidelity of teleportation protocols, as a function of resource entanglement, for three kinds of two mode oscillator states: states with fixed total photon number, number states entangled at a beam splitter, and the two-mode squeezed vacuum state. We define corresponding teleportation protocols for each case including phase noise to model degraded entanglement of each resource.Comment: 21 pages REVTeX, manuscript format, 7 figures postscript, many changes to pape

    Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors

    Full text link
    We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally-coated nanowires, which we used to produce functional Ω\Omega-gate and gate-all-around structures. These give sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding 10310^3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically-treated nanowire surfaces; a feature generally not possible with oxides produced by atomic layer deposition due to the surface `self-cleaning' effect. Our results highlight the potential for parylene as an alternative ultra-thin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties

    The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs

    Full text link
    There has recently been significant interest in rubrene single-crystals grown using physical vapour transport techniques due to their application in high-mobility organic field-effect transistor (OFET) devices. Despite numerous studies of the electrical properties of such crystals, there has only been one study to date focussing on characterising and optimising the crystal growth as a function of the relevant growth parameters. Here we present a study of the dependence of the yield of useful crystals (defined as crystals with at least one dimension of order 1 mm) on the temperature and volume flow of carrier gas used in the physical vapour growth process.Comment: Submitted for Proceedings of SPIE Microelectronics, MEMS and Nanotechnology Conference, Canberra, Australia, 4-7 Dec. 07. 8 Page

    Conditional quantum-state transformation at a beam splitter

    Get PDF
    Using conditional measurement on a beam splitter, we study the transformation of the quantum state of the signal mode within the concept of two-port non-unitary transformation. Allowing for arbitrary quantum states of both the input reference mode and the output reference mode on which the measurement is performed, we show that the non-unitary transformation operator can be given as an ss-ordered operator product, where the value of ss is entirely determined by the absolute value of the beam splitter reflectance (or transmittance). The formalism generalizes previously obtained results that can be recovered by simple specification of the non-unitary transformation operator. As an application, we consider the generation of Schr\"odinger-cat-like states. An extension to mixed states and imperfect detection is outlined.Comment: 7 Postscript figures, using Late

    Young people and political action: who is taking responsibility for positive social change?

    Get PDF
    A human rights perspective suggests that we are all responsible for ensuring the human rights of others, which in turn ensures that our own human rights are respected and protected. A convenience sample of 108 young people (41 males and 67 females) aged between 16 and 25 completed a questionnaire which asked about (a) levels of involvement in political activity and (b) sense of personal responsibility for ensuring that the human rights of marginalised groups (e.g. ethnic minorities, immigrants, lesbians and gay men) are protected. Findings showed that most respondents supported (in principle) the notion of human rights for all, but tended to engage in low key political activity (e.g. signing petitions; donating money or goods to charity) rather than actively working towards positive social change. Qualitative data collected in the questionnaire suggested three main barriers to respondents viewing themselves as agents of positive social change: (1) "It’s not my problem", (2) "It’s not my responsibility", and (3) a sense of helplessness. Suggestions for how political action might best be mobilised among young people are also discussed.</p

    The Performance of Private Equity Funds: Does Diversification Matter?

    Get PDF
    This paper is the first systematic analysis of the impact of diversification on the performance of private equity funds. A unique data set allows the exact evaluation of diversification across the dimensions financing stages, industries, and countries. Very different levels of diversification can be observed across sample funds. While some funds are highly specialized others are highly diversified. The empirical results show that the rate of return of private equity funds declines with diversification across financing stages, but increases with diversification across industries. Accordingly, the fraction of portfolio companies which have a negative return or return nothing at all, increase with diversification across financing stages. Diversification across countries has no systematic effect on the performance of private equity funds

    Kondo Temperature for the Two-Channel Kondo Models of Tunneling Centers

    Full text link
    The possibility for a two-channel Kondo (2CK2CK) non Fermi liquid state to appear in a metal as a result of the interaction between electrons and movable structural defects is revisited. As usual, the defect is modeled by a heavy particle moving in an almost symmetric double-well potential (DWP). Taking into account only the two lowest states in DWP is known to lead to a Kondo-like Hamiltonian with rather low Kondo temperature, TKT_K. We prove that, in contrast to previous believes, the contribution of higher excited states in DWP does not enhance TKT_K. On the contrary, TKT_K is reduced by three orders of magnitude as compared with the two-level model: the prefactor in TKT_K is determined by the spacing between the second and the third levels in DWP rather than by the electron Fermi energy. Moreover, TKT_K, turns out to be parametrically smaller than the splitting between the two lowest levels. Therefore, there is no microscopic model of movable defects which may justify non-Fermi liquid 2CK2CK phenomenology.Comment: 5 pages, 4 .eps figure

    Macroscopically distinct quantum superposition states as a bosonic code for amplitude damping

    Get PDF
    We show how macroscopically distinct quantum superposition states (Schroedinger cat states) may be used as logical qubit encodings for the correction of spontaneous emission errors. Spontaneous emission causes a bit flip error which is easily corrected by a standard error correction circuit. The method works arbitrarily well as the distance between the amplitudes of the superposed coherent states increases.Comment: 4 pages, 2 postscript figures, LaTeX2e, RevTeX, minor changes, 1 reference adde

    Continuous pumping and control of mesoscopic superposition state in a lossy QED cavity

    Get PDF
    Here we consider the continuous pumping of a dissipative QED cavity and derive the time-dependent density operator of the cavity field prepared initially as a superposition of mesoscopic coherent states. The control of the coherence of this superposition is analyzed considering the injection of a beam of two-level Rydberg atoms through the cavity. Our treatment is compared to other approaches.Comment: 15 pages, 6 PostScript figures, To appear in Phys. Rev.
    • …
    corecore