4,736 research outputs found

    UNDERSTANDING THE GLOBAL COMMONS

    Get PDF
    We want to clarify the way in which we think about the global commons, particularly the problem of global warming caused by greenhouse gas emissions and tropical deforestation. We develop a policy framework in which the policy goal is the sustainability of the earth's ability to absorb greenhouse gases. The framework considers the unequal incidence of benefits and costs of particular policies. We identify several resource management regimes and suggest that management under a common property regime is most appropriate. We conclude by identifying and briefly discussing types of policies that can achieve sustainability.Environmental Economics and Policy,

    Maximal entanglement of squeezed vacuum states via swapping with number-phase measurement

    Get PDF
    We propose a method to refine entanglement via swapping from a pair of squeezed vacuum states by performing the Bell measurement of number sum and phase difference. The resultant states are maximally entangled by adjusting the two squeezing parameters to the same value. We then describe the teleportation of number states by using the entangled states prepared in this way.Comment: 4 pages, 1 PS figure, RevTe

    Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors

    Full text link
    We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high temperatures using atomic layer deposition. We discuss our custom-built parylene deposition system, which is designed for reliable and controlled deposition of <100 nm thick parylene films on III-V nanowires standing vertically on a growth substrate or horizontally on a device substrate. The former case gives conformally-coated nanowires, which we used to produce functional Ω\Omega-gate and gate-all-around structures. These give sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding 10310^3 at room temperature. For the gate-all-around structure, we developed a novel fabrication strategy that overcomes some of the limitations with previous lateral wrap-gate nanowire transistors. Finally, we show that parylene can be deposited over chemically-treated nanowire surfaces; a feature generally not possible with oxides produced by atomic layer deposition due to the surface `self-cleaning' effect. Our results highlight the potential for parylene as an alternative ultra-thin insulator in nanoscale electronic devices more broadly, with potential applications extending into nanobioelectronics due to parylene's well-established biocompatible properties

    The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs

    Full text link
    There has recently been significant interest in rubrene single-crystals grown using physical vapour transport techniques due to their application in high-mobility organic field-effect transistor (OFET) devices. Despite numerous studies of the electrical properties of such crystals, there has only been one study to date focussing on characterising and optimising the crystal growth as a function of the relevant growth parameters. Here we present a study of the dependence of the yield of useful crystals (defined as crystals with at least one dimension of order 1 mm) on the temperature and volume flow of carrier gas used in the physical vapour growth process.Comment: Submitted for Proceedings of SPIE Microelectronics, MEMS and Nanotechnology Conference, Canberra, Australia, 4-7 Dec. 07. 8 Page

    Conditional quantum-state transformation at a beam splitter

    Get PDF
    Using conditional measurement on a beam splitter, we study the transformation of the quantum state of the signal mode within the concept of two-port non-unitary transformation. Allowing for arbitrary quantum states of both the input reference mode and the output reference mode on which the measurement is performed, we show that the non-unitary transformation operator can be given as an ss-ordered operator product, where the value of ss is entirely determined by the absolute value of the beam splitter reflectance (or transmittance). The formalism generalizes previously obtained results that can be recovered by simple specification of the non-unitary transformation operator. As an application, we consider the generation of Schr\"odinger-cat-like states. An extension to mixed states and imperfect detection is outlined.Comment: 7 Postscript figures, using Late

    Selective Hybridization of a Terpyridine-Based Molecule with a Noble Metal

    Full text link
    The electronic properties of metal-molecule interfaces can in principle be controlled by molecular design and self-assembly, yielding great potential for future nano- and optoelectronic technologies. However, the coupling between molecular orbitals and the electronic states of the surface can significantly influence molecular states. In particular, molecules designed to create metal-organic self-assembled networks have functional groups that by necessity are designed to interact strongly with metals. Here, we investigate the adsorption interactions of a terpyridine (tpy)-based molecule on a noble metal, Ag(111), by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) together with density functional theory (DFT) calculations. By comparing the local density of states (DOS) information gained from STS for the molecule on the bare Ag(111) surface with that of the molecule decoupled from the underlying metal by a NaCl bilayer, we find that tpy-localized orbitals hybridize strongly with the metal substrate. Meanwhile, those related to the phenyl rings that link the two terminal tpy groups are less influenced by the interaction with the surface. The selective hybridization of the tpy groups provides an example of strong, orbital-specific electronic coupling between a functional group and a noble-metal surface, which may alter the intended balance of interactions and resulting electronic behavior of the molecule-metal interface

    The Performance of Private Equity Funds: Does Diversification Matter?

    Get PDF
    This paper is the first systematic analysis of the impact of diversification on the performance of private equity funds. A unique data set allows the exact evaluation of diversification across the dimensions financing stages, industries, and countries. Very different levels of diversification can be observed across sample funds. While some funds are highly specialized others are highly diversified. The empirical results show that the rate of return of private equity funds declines with diversification across financing stages, but increases with diversification across industries. Accordingly, the fraction of portfolio companies which have a negative return or return nothing at all, increase with diversification across financing stages. Diversification across countries has no systematic effect on the performance of private equity funds
    corecore