4,736 research outputs found
UNDERSTANDING THE GLOBAL COMMONS
We want to clarify the way in which we think about the global commons, particularly the problem of global warming caused by greenhouse gas emissions and tropical deforestation. We develop a policy framework in which the policy goal is the sustainability of the earth's ability to absorb greenhouse gases. The framework considers the unequal incidence of benefits and costs of particular policies. We identify several resource management regimes and suggest that management under a common property regime is most appropriate. We conclude by identifying and briefly discussing types of policies that can achieve sustainability.Environmental Economics and Policy,
Maximal entanglement of squeezed vacuum states via swapping with number-phase measurement
We propose a method to refine entanglement via swapping from a pair of
squeezed vacuum states by performing the Bell measurement of number sum and
phase difference. The resultant states are maximally entangled by adjusting the
two squeezing parameters to the same value. We then describe the teleportation
of number states by using the entangled states prepared in this way.Comment: 4 pages, 1 PS figure, RevTe
Using ultra-thin parylene films as an organic gate insulator in nanowire field-effect transistors
We report the development of nanowire field-effect transistors featuring an
ultra-thin parylene film as a polymer gate insulator. The room temperature,
gas-phase deposition of parylene is an attractive alternative to oxide
insulators prepared at high temperatures using atomic layer deposition. We
discuss our custom-built parylene deposition system, which is designed for
reliable and controlled deposition of <100 nm thick parylene films on III-V
nanowires standing vertically on a growth substrate or horizontally on a device
substrate. The former case gives conformally-coated nanowires, which we used to
produce functional -gate and gate-all-around structures. These give
sub-threshold swings as low as 140 mV/dec and on/off ratios exceeding at
room temperature. For the gate-all-around structure, we developed a novel
fabrication strategy that overcomes some of the limitations with previous
lateral wrap-gate nanowire transistors. Finally, we show that parylene can be
deposited over chemically-treated nanowire surfaces; a feature generally not
possible with oxides produced by atomic layer deposition due to the surface
`self-cleaning' effect. Our results highlight the potential for parylene as an
alternative ultra-thin insulator in nanoscale electronic devices more broadly,
with potential applications extending into nanobioelectronics due to parylene's
well-established biocompatible properties
The effect of temperature and gas flow on the physical vapour growth of mm-scale rubrene crystals for organic FETs
There has recently been significant interest in rubrene single-crystals grown
using physical vapour transport techniques due to their application in
high-mobility organic field-effect transistor (OFET) devices. Despite numerous
studies of the electrical properties of such crystals, there has only been one
study to date focussing on characterising and optimising the crystal growth as
a function of the relevant growth parameters. Here we present a study of the
dependence of the yield of useful crystals (defined as crystals with at least
one dimension of order 1 mm) on the temperature and volume flow of carrier gas
used in the physical vapour growth process.Comment: Submitted for Proceedings of SPIE Microelectronics, MEMS and
Nanotechnology Conference, Canberra, Australia, 4-7 Dec. 07. 8 Page
Conditional quantum-state transformation at a beam splitter
Using conditional measurement on a beam splitter, we study the transformation
of the quantum state of the signal mode within the concept of two-port
non-unitary transformation. Allowing for arbitrary quantum states of both the
input reference mode and the output reference mode on which the measurement is
performed, we show that the non-unitary transformation operator can be given as
an -ordered operator product, where the value of is entirely determined
by the absolute value of the beam splitter reflectance (or transmittance). The
formalism generalizes previously obtained results that can be recovered by
simple specification of the non-unitary transformation operator. As an
application, we consider the generation of Schr\"odinger-cat-like states. An
extension to mixed states and imperfect detection is outlined.Comment: 7 Postscript figures, using Late
Selective Hybridization of a Terpyridine-Based Molecule with a Noble Metal
The electronic properties of metal-molecule interfaces can in principle be
controlled by molecular design and self-assembly, yielding great potential for
future nano- and optoelectronic technologies. However, the coupling between
molecular orbitals and the electronic states of the surface can significantly
influence molecular states. In particular, molecules designed to create
metal-organic self-assembled networks have functional groups that by necessity
are designed to interact strongly with metals. Here, we investigate the
adsorption interactions of a terpyridine (tpy)-based molecule on a noble metal,
Ag(111), by low-temperature scanning tunneling microscopy (STM) and
spectroscopy (STS) together with density functional theory (DFT) calculations.
By comparing the local density of states (DOS) information gained from STS for
the molecule on the bare Ag(111) surface with that of the molecule decoupled
from the underlying metal by a NaCl bilayer, we find that tpy-localized
orbitals hybridize strongly with the metal substrate. Meanwhile, those related
to the phenyl rings that link the two terminal tpy groups are less influenced
by the interaction with the surface. The selective hybridization of the tpy
groups provides an example of strong, orbital-specific electronic coupling
between a functional group and a noble-metal surface, which may alter the
intended balance of interactions and resulting electronic behavior of the
molecule-metal interface
The Performance of Private Equity Funds: Does Diversification Matter?
This paper is the first systematic analysis of the impact of diversification on the performance of private equity funds. A unique data set allows the exact evaluation of diversification across the dimensions financing stages, industries, and countries. Very different levels of diversification can be observed across sample funds. While some funds are highly specialized others are highly diversified. The empirical results show that the rate of return of private equity funds declines with diversification across financing stages, but increases with diversification across industries. Accordingly, the fraction of portfolio companies which have a negative return or return nothing at all, increase with diversification across financing stages. Diversification across countries has no systematic effect on the performance of private equity funds
- …