9,614 research outputs found

    Doppler line profiles measurement of the Jovian Lyman Alpha emission with OAO-C

    Get PDF
    Observation of Jupiter made with the high resolution ultraviolet spectrometer of the Orbiting Astronomical Observatory copernicus in April and May, 1980, yield a Jovian Lyman alpha emission intensity of 7 + or 2.5 RR. This indicates a decrease by about a factor of two since the Voyager ultraviolet spectrometer measurements, nearly a year earlier. An unusually high column abundance of hydrogen atoms above the methane homopause at the Voyager epoch is indicated. Since the auroral charged particle bombardment of molecular hydrogen is expected to contribute significantly to the global population of the hydrogen atoms, it is suggested that at the time of the Voyager Jupiter encounter unusually high auroral activity existed, perhaps d to the high concentration of the Io plasma torus. The temporal variation of the Saturn lyman alpha emission, when contrasted with the Jovian data, reveals that the auroral processes are not nearly as important in determining the Saturn Lyman alpha intensity in the nonauroral region

    Real Time Control of the Active MHD Diagnostic on Alcator C-Mod

    Get PDF

    Confirmation of the Planet Hypothesis for the Long-period Radial Velocity Variations of Beta Geminorum

    Get PDF
    We present precise stellar radial velocity measurements for the K giant star Beta Gem spanning over 25 years. These data show that the long period low amplitude radial velocity variations found by Hatzes & Cochran (1993) are long-lived and coherent. An examination of the Ca II K emission, spectral line shapes from high resolution data (R = 210,000), and Hipparcos photometry show no significant variations of these quantities with the RV period. These data confirm the planetary companion hypothesis suggested by Hatzes & Cochran (1993). An orbital solution assuming a stellar mass of 1.7 M_sun yields a period, P = 589.6 days, a minimum mass of 2.3 M_Jupiter, and a semi-major axis, and a = 1.6 AU. The orbit is nearly circular (e = 0.02). Beta Gem is the seventh intermediate mass star shown to host a sub-stellar companion and suggests that planet-formation around stars much more massive than the sun may common.Comment: 10 pages, 9 figures, Astronomy and Astrophysics, in pres

    Temperature driven α\alpha to β\beta phase-transformation in Ti, Zr and Hf from first principles theory combined with lattice dynamics

    Full text link
    Lattice dynamical methods used to predict phase transformations in crystals typically deal with harmonic phonon spectra and are therefore not applicable in important situations where one of the competing crystal structures is unstable in the harmonic approximation, such as the bcc structure involved in the hcp to bcc martensitic phase transformation in Ti, Zr and Hf. Here we present an expression for the free energy that does not suffer from such shortcomings, and we show by self consistent {\it ab initio} lattice dynamical calculations (SCAILD), that the critical temperature for the hcp to bcc phase transformation in Ti, Zr and Hf, can be effectively calculated from the free energy difference between the two phases. This opens up the possibility to study quantitatively, from first principles theory, temperature induced phase transitions.Comment: 4 pages, 3 figure

    Possible Observational Criteria for Distinguishing Brown Dwarfs from Planets

    Get PDF
    The difference in formation process between binary stars and planetary systems is reflected in their composition as well as their orbital architecture, particularly orbital eccentricity as a function of orbital period. It is suggested here that this difference can be used as an observational criterion to distinguish between brown dwarfs and planets. Application of the orbital criterion suggests that with three possible exceptions, all of the recently-discovered substellar companions discovered to date may be brown dwarfs and not planets. These criterion may be used as a guide for interpretation of the nature of sub-stellar mass companions to stars in the future.Comment: LaTeX, 11 pages including 2 figures, accepted for publication in the Astrophysical Journal Letter

    The Lick Planet Search: Detectability and Mass Thresholds

    Get PDF
    We analyse 11 years of precise radial velocities for 76 solar type stars from the Lick survey. Eight stars in this sample have previously reported planetary-mass companions, all with mass (m sin i) less than 8 Jupiter masses (MJ). For the stars without a detected companion, we place upper limits on possible companion mass. For most stars, we can exclude companions with m sin i > 0.7 MJ (a/AU)^1/2 for orbital radii a < 5 AU. We use our results to interpret the observed masses and orbital radii of planetary-mass companions. For example, we show that the finite duration of the observations makes detection of Jupiter mass companions more and more difficult for orbital radii beyond 3 AU. Thus it is possible that the majority of solar type stars harbor Jupiter-mass companions much like our own, and if so these companions should be detectable in a few years. To search for periodicities, we adopt a "floating-mean" periodogram, which improves on the traditional Lomb-Scargle periodogram by accounting for statistical fluctuations in the mean of a sampled sinusoid. We discuss in detail the normalization of the periodogram, an issue which has been of some debate in the literature.Comment: To appear in the Astrophysical Journal (50 pages, LaTeX, including 11 figures

    Low Temperature Physics

    Get PDF
    Contains research objectives and reports on one research project

    Hypothesis testing for an entangled state produced by spontaneous parametric down conversion

    Full text link
    Generation and characterization of entanglement are crucial tasks in quantum information processing. A hypothesis testing scheme for entanglement has been formulated. Three designs were proposed to test the entangled photon states created by the spontaneous parametric down conversion. The time allocations between the measurement vectors were designed to consider the anisotropic deviation of the generated photon states from the maximally entangled states. The designs were evaluated in terms of the p-value based on the observed data. It has been experimentally demonstrated that the optimal time allocation between the coincidence and anti-coincidence measurement vectors improves the entanglement test. A further improvement is also experimentally demonstrated by optimizing the time allocation between the anti-coincidence vectors. Analysis on the data obtained in the experiment verified the advantage of the entanglement test designed by the optimal time allocation.Comment: 7 figures, 9 pages. This paper is revised for increasing the readership for experimentalists. Hence, the mathematical part is moved to a new manuscript quant-ph/060802
    corecore