90 research outputs found

    Connections between the facial and trigeminal nerves: Anatomical basis for facial muscle proprioception

    Get PDF
    Proprioception is a quality of sensibility that originates in specialized sensory organs (proprioceptors) that inform the central nervous system about static and dynamic conditions of muscles and joints. The facial muscles are innervated by efferent motor nerve fibers and typically lack proprioceptors. However, facial proprioception plays a key role in the regulation and coordination of the facial musculature and diverse reflexes. Thus, facial muscles must be necessarily supplied also for afferent sensory nerve fibers provided by other cranial nerves, especially the trigeminal nerve. Importantly, neuroanatomical studies have demonstrated that facial proprioceptive impulses are conveyed through branches of the trigeminal nerve to the central nervous system. The multiple communications between the facial and the trigeminal nerves are at the basis of these functional characteristics. Here we review the literature regarding the facial (superficial) communications between the facial and the trigeminal nerves, update the current knowledge about proprioception in the facial muscles, and hypothesize future research in facial proprioception

    Engineering aspheric liquid crystal lenses by using the transmission electrode technique

    Get PDF
    The transmission electrode technique has been recently proposed as a versatile method to obtain various types of liquid-crystal (LC) lenses. In this work, an equivalent electric circuit and new analytical expressions based on this technique are developed. In addition, novel electrode shapes are proposed in order to generate different phase profiles. The analytical expressions depend on manufacturing parameters that have been optimized by using the least squares method. Thanks to the proposed design equations and the associated optimization, the feasibility of engineering any kind of aspheric LC lenses is demonstrated, which is key to obtain aberration-free lenses. The results are compared to numerical simulations validating the proposed equations. This novel technique, in combination with the proposed design equations, opens a new path for the design and fabrication of LC lenses and even other types of adaptive-focus lenses based on voltage control.This work was supported by Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1, PID2019-107270RB-C21 and PID2019-109072RB-C31)

    Characterization of the gas-liquid interfacial waves in vertical upward co-current annular flows

    Full text link
    [EN] For more than fifty years, hundreds of research works have focused on the study of annular flow because of its huge importance in many industrial processes, for instance, chemical, petroleum, etc., being of particular interest in nuclear industry. Specifically, interfacial waves play a vital role in the mass, momentum and energy transference processes between gas and liquid phases. This paper describes the new experimental measurements of vertical upward co-current two-phase gas-liquid flow carried out in a tube with an inner diameter of 44 mm. The liquid film thickness and the major characteristics of the interfacial waves have been measured using a non-intrusive instrument, a conductance probe. The physical phenomenon in which this device is based is the change in the electrical conductivity between air and water, i.e., the electrical signal collected in the sensor receiver depends on the thickness of the liquid film layer. The experimental measurements range from 2000 to 3500 l/min for the gas volumetric flow rate, and from 4 to 10 l/min for the liquid volumetric flow rate. Correlation of the experimental measurements of liquid film thickness and the major properties of the interfacial waves have been analyzed using non-dimensional numbers. An important part of the document focuses on the comparison of the experimental data and the fitting correlations against several of the most widely used expressions. Throughout this paper, in addition to present all the available correlations, the existing scattering found when comparing against other expressions have been also confirmed, underlining the existence of gaps of knowledge even today. Emphasize that the proposed correlations are the ones that better fit the data of all experimental series carried out under the present study for the analyzed variables, with almost all the experimental points covered by the +/- 10% error bands of the new correlations.The authors are indebted to the plan of I+D support of the EXMOTRANSIN project ENE2016-79489-C2-1-P.Cuadros-Orón, JL.; Rivera-Durán, Y.; Berna, C.; Escrivá, A.; Muñoz-Cobo, JL.; Monrós-Andreu, G.; Chiva, S. (2019). Characterization of the gas-liquid interfacial waves in vertical upward co-current annular flows. Nuclear Engineering and Design. 346:112-130. https://doi.org/10.1016/j.nucengdes.2019.03.008S11213034

    Double electromagnetically induced transparency resonance in slotted metasurfaces supporting bound states in the continuum

    Get PDF
    This work proposes and theoretically demonstrates a double electromagnetic induced transparency resonance generated by a novel dielectric metasurface consisting of a periodic array of square slots. The resonances stem from symmetry-protected bound states in the continuum whose quality factor tends to infinity when the structure is symmetric. The quasi-bound states in the continuum supported by the asymmetric metasurface can be exploited to obtain double high quality factor resonances in transmission (electromagnetic induced transparency like effect) that can be modulated with the external refractive index for sensing.This work was supported by Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1, PID2019-107270RB-C21 and PID2019-109072RB-C31)

    Strongly resonant silicon slot metasurfaces with symmetry-protected bound states in the continuum

    Get PDF
    In this work, a novel all-dielectric metasurface made of arrayed circular slots etched in a silicon layer is proposed and theoretically investigated. The structure is designed to support both Mie-type multipolar resonances and symmetry-protected bound states in the continuum (BIC). Specifically, the metasurface consists of interrupted circular slots, following the paradigm of complementary split-ring resonators. This configuration allows both silicon-on-glass and free-standing metasurfaces and the arc length of the split-rings provides an extra tuning parameter. The nature of both BIC and non-BIC resonances supported by the metasurface is investigated by employing the Cartesian multipole decomposition technique. Thanks to the non-radiating nature of the quasi-BIC resonance, extremely high Q-factor responses are calculated, both by fitting the simulated transmittance spectra to an extended Fano model and by an eigenfrequency analysis. Furthermore, the effect of optical losses in silicon on quenching the achievable Q-factor values is discussed. The metasurface features a simple bulk geometry and sub-wavelength dimensions. This novel device, its high Q-factors, and strong energy confinement open new avenues of research on light-matter interactions in view of new applications in non-linear devices, biological sensors, and optical communications.Ministerio de Ciencia, Innovación y Universidades (PID2019-107270RB-C21, PID2019-109072RB-C31, RTC2017-6321-1); Comunidad de Madrid (S2018/NMT-4326); Ministerio de Economía y Competitividad (TEC2016-76021-C2-2-R, TEC2016-77242-C3-1-R)

    Electromagnetically induced transparency in square slotted dielectric metasurfaces supporting bound states in the continuum

    Get PDF
    In this work, a novel dielectric metasurface consisting of square slotted arrays etched in a silicon layer is proposed and theoretically demonstrated. The structure is designed to support electromagnetically induced transparency (EIT) based on quasi-bound states in the continuum (qBIC). Specifically, the metasurface consists of square slots with a silicon gap that breaks the symmetry of the structure. Thanks to the interaction of the sharp quasi-BIC resonances with a broadband background mode, an extremely high Q factor EIT response of 6⋅106 is demonstrated (considering the length scales feasible during fabrication and optical losses). Moreover, the resonator possesses a simple bulk geometry and subwavelength dimensions. The proposed metasurface, its high Q factors, and strong energy confinement may open new avenues of research on light-matter interactions in emerging applications in non-linear devices, lasing, biological sensors, optical communications, etc.This work was supported by Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1, PID2019-107270RB-C21 and PID2019-109072RB-C31)
    corecore