17 research outputs found

    A diversity-generating retroelement encoded by a globally ubiquitous Bacteroides phage

    No full text
    Abstract Background Diversity-generating retroelements (DGRs) are genetic cassettes that selectively mutate target genes to produce hypervariable proteins. First characterized in Bordetella bacteriophage BPP-1, the DGR creates a hypervariable phage tail fiber that enables host tropism switching. Subsequent surveys for DGRs conclude that the majority identified to date are bacterial or archaeal in origin. This work examines bacteriophage and bacterial genomes for novel phage-encoded DGRs. Results This survey discovered 92 DGRs that were only found in phages exhibiting a temperate lifestyle. The majority of phage-encoded DGRs were identified as prophages in bacterial hosts from the phyla Bacteroidetes, Proteobacteria, and Firmicutes. Sequence reads from these previously unidentified prophages were present in viral metagenomes (viromes), indicating these prophages can produce functional viruses. Five phages possessed hypervariable proteins with structural similarity to the tail fiber of BPP-1, whereas the functions of the remaining DGR target proteins were unknown. A novel temperate phage that harbors a DGR cassette targeting a protein of unknown function was induced from Bacteroides dorei. This phage, here named Bacteroides dorei Hankyphage, lysogenizes 13 different Bacteroides species and was present in 34% and 21% of whole-community metagenomes and human-associated viromes, respectively. Conclusions Here, the number of known DGR-containing phages is increased from four to 92. All of these phages exhibit a temperate lifestyle, including a cosmopolitan human-associated phage. Targeted hypervariation by temperate phages may be a ubiquitous mechanism underlying phage-bacteria interaction in the human microbiome

    Microbiome of Sri Lankan Coral Reefs: An Indian Ocean Island Subjected to a Gradient of Natural and Anthropogenic Impacts

    No full text
    Coral reefs around Sri Lanka have coexisted with human communities for thousands of years and are a continual source of food, economic productivity, and tourism. Although these reef systems sustain nearby populations, little is known about the presence or functional role of microbial communities on reefs dominated by hard corals or fleshy algae. Coral reef benthos cover was recorded, and reef-associated water samples were collected, sequenced and analyzed from seven coral reefs around Sri Lanka. Microbial metagenomes were analyzed to reveal both the taxonomic and metabolic makeup of the microbial communities present at each site. A metagenomic analysis of microbial phyla showed that Alphaproteobacteria and Gammaproteobacteria were most abundant, constituting up to 79.4% of microbial communities. At the order level, Rhodobacterales dominated the microbial communities across all sites, with the exception of the Paraviwella coral reef, where the order Alteromonadales dominated. A Principal Component Analysis (PCA) was performed using metagenomic sequence data to find the possible trends of interactions and drivers of taxonomic and metabolic community structure. This study is the first microbial metagenome dataset of coral reef associated water from the Indian Ocean continental island, Sri Lanka. These data further confirm the need for a comprehensive study of reefs in Sri Lanka aimed at elucidating the processes involved in microbial energy utilization

    Common antibiotics, azithromycin and amoxicillin, affect gut metagenomics within a household

    No full text
    Abstract Background The microbiome of the human gut serves a role in a number of physiological processes, but can be altered through effects of age, diet, and disturbances such as antibiotics. Several studies have demonstrated that commonly used antibiotics can have sustained impacts on the diversity and the composition of the gut microbiome. The impact of the two most overused antibiotics, azithromycin, and amoxicillin, in the human microbiome has not been thoroughly described. In this study, we recruited a group of individuals and unrelated controls to decipher the effects of the commonly used antibiotics amoxicillin and azithromycin on their gut microbiomes. Results We characterized the gut microbiomes by metagenomic sequencing followed by characterization of the resulting microbial communities. We found that there were clear and sustained effects of the antibiotics on the gut microbial community with significant alterations in the representations of Bifidobacterium species in response to azithromycin (macrolide antibiotic). These results were supported by significant increases identified in putative antibiotic resistance genes associated with macrolide resistance. Importantly, we did not identify these trends in the unrelated control individuals. There were no significant changes observed in other members of the microbial community. Conclusions As we continue to focus on the role that the gut microbiome plays and how disturbances induced by antibiotics might affect our overall health, elucidating members of the community most affected by their use is of critical importance to understanding the impacts of common antibiotics on those who take them. Clinical Trial Registration Number NCT05169255. This trial was retrospectively registered on 23–12-2021

    Cystic Fibrosis Rapid Response: Translating Multi-omics Data into Clinically Relevant Information

    No full text
    Proper management of polymicrobial infections in patients with cystic fibrosis (CF) has extended their life span. Information about the composition and dynamics of each patient’s microbial community aids in the selection of appropriate treatment of pulmonary exacerbations. We propose the cystic fibrosis rapid response (CFRR) as a fast approach to determine viral and microbial community composition and activity during CF pulmonary exacerbations. The CFRR potential is illustrated with a case study in which a cystic fibrosis fatal exacerbation was characterized by the presence of shigatoxigenic Escherichia coli. The incorporation of the CFRR within the CF clinic could increase the life span and quality of life of CF patients.Pulmonary exacerbations are the leading cause of death in cystic fibrosis (CF) patients. To track microbial dynamics during acute exacerbations, a CF rapid response (CFRR) strategy was developed. The CFRR relies on viromics, metagenomics, metatranscriptomics, and metabolomics data to rapidly monitor active members of the viral and microbial community during acute CF exacerbations. To highlight CFRR, a case study of a CF patient is presented, in which an abrupt decline in lung function characterized a fatal exacerbation. The microbial community in the patient’s lungs was closely monitored through the multi-omics strategy, which led to the identification of pathogenic shigatoxigenic Escherichia coli (STEC) expressing Shiga toxin. This case study illustrates the potential for the CFRR to deconstruct complicated disease dynamics and provide clinicians with alternative treatments to improve the outcomes of pulmonary exacerbations and expand the life spans of individuals with CF

    Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Mexico from 2003 to 2012

    No full text
    <div><p>In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America.</p></div
    corecore