6 research outputs found

    Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Get PDF
    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally

    The Source of the PB1 Gene in Influenza Vaccine Reassortants Selectively Alters the Hemagglutinin Content of the Resulting Seed Virus

    No full text
    Fulltext embargoed for: 6 months post date of publicationThe yields of egg-grown influenza vaccines are maximized by the production of a seed strain using a reassortment of the seasonal influenza virus isolate with a highly egg-adapted strain. The seed virus is selected based on high yields of viral hemagglutinin (HA) and expression of the surface antigens from the seasonal isolate. The remaining proteins are usually derived from the high-growth parent. However, a retrospective analysis of vaccine seeds revealed that the seasonal PB1 gene was selected in more than 50% of reassortment events. Using the model seasonal H3N2 virus A/Udorn/307/72 (Udorn) virus and the high-growth A/Puerto Rico/8/34 (PR8) virus, we assessed the influence of the source of the PB1 gene on virus growth and vaccine yield. Classical reassortment of these two strains led to the selection of viruses that predominantly had the Udorn PB1 gene. The presence of Udorn PB1 in the seed virus, however, did not result in higher yields of virus or HA compared to the yields in the corresponding seed virus with PR8 PB1. The 8-fold-fewer virions produced with the seed virus containing the Udorn PB1 were somewhat compensated for by a 4-fold increase in HA per virion. A higher HA/nucleoprotein (NP) ratio was found in past vaccine preparations when the seasonal PB1 was present, also indicative of a higher HA density in these vaccine viruses. As the HA viral RNA (vRNA) and mRNA levels in infected cells were similar, we propose that PB1 selectively alters the translation of viral mRNA. This study helps to explain the variability of vaccine seeds with respect to HA yield

    A complex mosaic of enteroviruses shapes community-acquired hand, foot and mouth disease transmission and evolution within a single hospital

    Get PDF
    Human enteroviruses (EV) pose a major risk to public health. This is especially so in the Asia-Pacific region where increasing numbers of hand, foot and mouth disease (HFMD) cases and large outbreaks of severe neurological disease associated with EV-A71 have occurred. Despite their importance, key aspects of the emergence, epidemiology and evolution of EVs remain unclear, and most studies of EV evolution have focused on a limited number of genes. Here, we describe the genomic-scale evolution of EV-A viruses sampled from pediatric patients with mild disease attending a single hospital in western Sydney, Australia, over an 18-month period. This analysis revealed the presence of eight viral serotypes-Coxsackievirus (CV) A2, A4, A5, A6, A8, A10, A16 and EV-A71-with up to four different serotypes circulating in any 1 month. Despite an absence of large-scale outbreaks, high levels of geographical and temporal mixing of serotypes were identified. Phylogenetic analysis revealed that multiple strains of the same serotype were present in the community, and that this diversity was shaped by multiple introductions into the Sydney population, with only a single lineage of CV-A6 exhibiting in situ transmission over the entire study period. Genomic-scale analyses also revealed the presence of novel and historical EV recombinants. Notably, our analysis revealed no association between viral phylogeny, including serotype, and patient age, sex, nor disease severity (for uncomplicated disease). This study emphasizes the contribution of EV-A viruses other than EV-A71 to mild EV disease including HFMD in Australia and highlights the need for greater surveillance of these viruses to improve strategies for outbreak preparedness and vaccine design

    An Atypical Parvovirus Drives Chronic Tubulointerstitial Nephropathy and Kidney Fibrosis

    Full text link
    © 2018 Elsevier Inc. The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed “mouse kidney parvovirus” (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans. A kidney parvovirus found in multiple laboratory mouse colonies causes spontaneous nephropathy and represents a new tool for studying chronic kidney disease
    corecore