664 research outputs found

    Powder sheets additive manufacturing: Principles and capabilities for multi-material printing

    Get PDF
    In this work, a novel Metal Additive Manufacturing using Powder sheets (MAPS) method for printing multimaterial composites in one process is proposed. MAPS employs powder sheets (i.e. metal powder-polymer matrix flexible films) as the feedstock material. Its key advantages include a relatively rapid change from one material to another and a minimum wastage of materials due to the elimination of the powder bed. The powder sheets were fabricated using a 'solvent casting' method. They were then employed in a commercialised metal printer for printing metal multi-material composites. To prove the disruptive concept of MAPS, a 60-layer trimetallic multi-material composite (304 L stainless steel, In718 and CoCrFeMnNi high entropy alloy) was additively manufactured using three different types of powder sheet material in the same manufacturing system for the first time. Experimental results indicate a high density (99.80 %) multi-material composites was printed by MAPS. EDX and SEM observations of the multi-material composites revealed variations of chemical composition and microstructure along the build direction. The newly proposed MAPS manufacturing method and results of this study provide insights into a new avenue for multi-material metallic parts

    Emulation of X-ray Light-Field Cameras

    Get PDF
    X-ray plenoptic cameras acquire multi-view X-ray transmission images in a single exposure (light-field). Their development is challenging: designs have appeared only recently, and they are still affected by important limitations. Concurrently, the lack of available real X-ray light-field data hinders dedicated algorithmic development. Here, we present a physical emulation setup for rapidly exploring the parameter space of both existing and conceptual camera designs. This will assist and accelerate the design of X-ray plenoptic imaging solutions, and provide a tool for generating unlimited real X-ray plenoptic data. We also demonstrate that X-ray light-fields allow for reconstructing sharp spatial structures in three-dimensions (3D) from single-shot data

    Prototyping X-ray tomographic reconstruction pipelines with FleXbox

    Get PDF
    Computer Tomography (CT) scanners for research applications are often designed to facilitate flexible acquisition geometries. Making full use of such CT scanners requires advanced reconstruction software that can (i) deal with a broad range of geometrical scanning settings, (ii) allows for customization of processing algorithms, and (iii) has the capability to process large amounts of data. FleXbox is a Python-based tomographic reconstruction toolbox focused on these three functionalities. It is built to bridge the gap between low-level tomographic reconstruction packages (e.g. ASTRA toolbox) and high-level distributed systems (e.g. Livermore Tomography Tools). FleXbox allows to model arbitrary source, detector and object trajectories. The modular architecture of FleXbox allows to design an optimal reconstruction approach for a single CT dataset. When multiple datasets of an object are acquired (either different spatial regions or different snapshots in time), they can be combined into a larger high resolution volume or a time series of volumes. The software allows to then create a computational reconstruction pipeline that can run without user interaction and enables efficient computation on large-scale 3D volumes on a single workstation

    Probing the Heterogeneity of Protein Kinase Activation in Cells by Super-Resolution Microscopy

    Get PDF
    Heterogeneity of mitogen-activated protein kinase (MAPK) activation in genetically identical cells, which occurs in response to epidermal growth factor receptor (EGFR) signaling, remains poorly understood. MAPK cascades integrate signals emanating from different EGFR spatial locations, including the plasma membrane and endocytic compartment. We previously hypothesized that in EGF-stimulated cells the MAPK phosphorylation (pMAPK) level and activity are largely determined by the spatial organization of the EGFR clusters within the cell. For experimental testing of this hypothesis, we used super-resolution microscopy to define EGFR clusters by receptor numbers (N) and average intra-cluster distances (d). From this data, we predicted the extent of pMAPK with 85% accuracy on a cell-to-cell basis with control data returning 54% accuracy (P50nm were most predictive for pMAPK level in cells. Electron microscopy revealed that these large clusters were primarily localized to the limiting membrane of multivesicular bodies (MVB). Many tighter packed dimers/multimers (d<50nm) were found on intraluminal vesicles within MVBs, where they were unlikely to activate MAPK because of the physical separation. Our results suggest that cell-to-cell differences in N and d contain crucial information to predict EGFR-activated cellular pMAPK levels and explain pMAPK heterogeneity in isogenic cells

    how many and who are affected?

    Get PDF
    Background: Nicotine dependence during adolescence increases the risk of continuing smoking into adulthood. The magnitude of nicotine dependence among adolescents in the European Union (EU) has not been established. We aimed to estimate the number of nicotine dependent 15-year-old adolescents in the EU, and identify high-risk groups. Methods: The number of nicotine dependent 15-year-olds in the EU was derived combining: (i) total number of 15-year-olds in the EU (2013 Eurostat), (ii) smoking prevalence among 15-year-olds (2013/2014 HBSC survey) and (iii) proportion of nicotine dependent 15-year-olds in six EU countries (2013 SILNE survey). Logistic regression analyses identified high-risk groups in the SILNE dataset. Results: We estimated 172 636 15-year-olds were moderately to highly nicotine dependent (3.2% of all 15 years old; 35.3% of daily smokers). In the total population, risk of nicotine dependence was higher in males, adolescents with poor academic achievement, and those with smoking parents or friends. Among daily smokers, only lower academic achievement and younger age of smoking onset were associated with nicotine dependence. Conclusion: According to our conservative estimates, more than 172 000 15-year-old EU adolescents were nicotine dependent in 2013. Prevention of smoking initiation, especially among adolescents with poor academic performance, is necessary to prevent a similar number of adolescents getting addicted to nicotine each consecutive year.publishersversionpublishe

    Malarial Hemozoin Is a Nalp3 Inflammasome Activating Danger Signal

    Get PDF
    BACKGROUND: Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents. METHODOLOGY/PRINCIPAL FINDINGS: We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1beta. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K(+) efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged. SIGNIFICANCE/CONCLUSIONS: The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria
    corecore