6 research outputs found

    Swine health: history, challenges and prospects

    Get PDF
    En los sistemas de producción porcina, uno de los puntos críticos que deben ser atendidos con estricto rigor, es la salud de los cerdos. La salud, es un componente estructural del bienestar animal y refleja un estado óptimo de los animales, lo que repercute directamente en un mayor desempeño productivo y mejores condiciones de desarrollo. Uno de los eslabones más frágiles de la salud de los cerdos, es la presencia de enfermedades infecciosas más importantes, las cuales pueden representar pérdidas hasta del 100 % de la producción, por lo cual, debe ser un tema de atención constante, y continuamente vigilado por el Médico Veterinario Zootecnista y los productores, en perfecta coordinación con las autoridades sanitarias oficiales. En la actualidad, la implementación de mejores prácticas en la cadena productiva es de interés para productores y consumidores. El control de las enfermedades infecciosas debe ser un tema de colaboración entre los diferentes actores del entorno y ser considerado un bien público, ya que las repercusiones negativas, pueden ser desde el nivel local hasta mundial. En la presente revisión, se abordará la temática relacionada con las principales enfermedades infecciosas que ponen en riesgo la salud porcina, el impacto, las principales aportaciones realizadas por el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) en sus 35 años de vida, específicamente en el Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad (CENID-SAI), anteriormente conocido como el emblemático CENID-Microbiología o Palo Alto.In swine production systems, one of the critical points that must be strictly attended to is the health of the pigs. Health is a structural component of animal welfare and reflects an optimal state of the animals, which has a direct impact on a higher productive performance and better development conditions. Infectious diseases are one of the greatest threats to the health of pigs and can cause losses of up to 100 % of production; therefore, it requires constant attention and continuous monitoring by the veterinarian and producers, in perfect coordination with the official health authorities. Currently, the implementation of best practices in the production chain is of interest to both producers and consumers. The control of infectious diseases requires collaboration between the various actors in the environment and must be considered a public good, since their negative repercussions can range from the local to the global level. This review will address the main infectious diseases that endanger swine health, their impact, the main contributions made by the National Institute for Research in Forestry, Agriculture and Livestock (INIFAP) in its 35 years of life, mainly at the National Center for Disciplinary Research in Animal Health and Safety (CENID-SAI), formerly known as the emblematic CENID-Microbiología or Palo Alto

    El Control y Erradicación de la Fiebre Porcina Clásica en México con la Vacuna PAV-250

    No full text

    Protección conferida por la vacuna pav-250, contra la fiebre porcina clásica al vacunar cerdos de uno, siete, 15 v 21 días de edad.

    Get PDF
    Para determinar si la vacuna PAV-250 protege contra la Fiebre Porcina Clásica (FPC) a lechones de uno, siete, 15 y 21 días, se utilizaron cuatro grupo

    Survival of classic swine fever virus in hams made from the meat of pigs vaccinated with the PAV-250 strain and unvaccinated pigs

    Get PDF
    The study was to determine the presence of Classical Swine Fever virus (CSFv), in the meat of vaccinated pigs with the PAV-250 strain and then challenged using the same strain. Five treatment groups were established (each with four pigs). Group A: Pigs thatwere fed with processed hams from negative animals; Group B: Pigs that were fed with processed hams from commercial pigs inoculated with the ALD (reference strain) (titre of 104.0/ml); Group C: Pigs fed with processed hams from pigs infected with the virulent ALD strain (titre of 102.5/ml); Group D: Pigs fed with processed hams from pigs vaccinated with the PAV-250 strain and challenged with the ALD strain (titre of 101.1/ml); and Group E: Pigs fed with processed hams from pigs vaccinated with two doses of the PAV-250 strain and challenged with the ALD strain (negative). Blood samples were taken at d 1, 5, 10, 15 and 20 for biometric analysis. Groups B, C and D manifested clinical signs of CSFv: 40 °C temperature, anorexia, paralysis, vomiting, diarrhea, tremor, hirsute hair and cyanosis. Pigs were slaughtered and necropsies performed to identify lesions in tissues. Results of direct immunofluorescence testing of tissues were positive and the virus was recovered. Under these study conditions, it was found that CSFv resisted the cooking method at 68 °C for 40 min in hams from unvaccinated pigs, and that the virus was able to transmit the disease to healthy unvaccinated pigs, whereas the hams from the vaccinated animals did not transmit the virus.The study was to determine the presence of Classical Swine Fever virus (CSFv), in the meat of vaccinated pigs with the PAV-250 strain and then challenged using the same strain. Five treatment groups were established (each with four pigs). Group A: Pigs thatwere fed with processed hams from negative animals; Group B: Pigs that were fed with processed hams from commercial pigs inoculated with the ALD (reference strain) (titre of 104.0/ml); Group C: Pigs fed with processed hams from pigs infected with the virulent ALD strain (titre of 102.5/ml); Group D: Pigs fed with processed hams from pigs vaccinated with the PAV-250 strain and challenged with the ALD strain (titre of 101.1/ml); and Group E: Pigs fed with processed hams from pigs vaccinated with two doses of the PAV-250 strain and challenged with the ALD strain (negative). Blood samples were taken at d 1, 5, 10, 15 and 20 for biometric analysis. Groups B, C and D manifested clinical signs of CSFv: 40 °C temperature, anorexia, paralysis, vomiting, diarrhea, tremor, hirsute hair and cyanosis. Pigs were slaughtered and necropsies performed to identify lesions in tissues. Results of direct immunofluorescence testing of tissues were positive and the virus was recovered. Under these study conditions, it was found that CSFv resisted the cooking method at 68 °C for 40 min in hams from unvaccinated pigs, and that the virus was able to transmit the disease to healthy unvaccinated pigs, whereas the hams from the vaccinated animals did not transmit the virus
    corecore