24 research outputs found

    Uniqueness of RNA Coliphage Qβ Display System in Directed Evolutionary Biotechnology

    Get PDF
    Phage display technology involves the surface genetic engineering of phages to expose desirable proteins or peptides whose gene sequences are packaged within phage genomes, thereby rendering direct linkage between genotype with phenotype feasible. This has resulted in phage display systems becoming invaluable components of directed evolutionary biotechnology. The M13 is a DNA phage display system which dominates this technology and usually involves selected proteins or peptides being displayed through surface engineering of its minor coat proteins. The displayed protein or peptide’s functionality is often highly reduced due to harsh treatment of M13 variants. Recently, we developed a novel phage display system using the coliphage Qβ as a nano-biotechnology platform. The coliphage Qβ is an RNA phage belonging to the family of Leviviridae, a long investigated virus. Qβ phages exist as a quasispecies and possess features making them comparatively more suitable and unique for directed evolutionary biotechnology. As a quasispecies, Qβ benefits from the promiscuity of its RNA dependent RNA polymerase replicase, which lacks proofreading activity, and thereby permits rapid variant generation, mutation, and adaptation. The minor coat protein of Qβ is the readthrough protein, A1. It shares the same initiation codon with the major coat protein and is produced each time the ribosome translates the UGA stop codon of the major coat protein with the of misincorporation of tryptophan. This misincorporation occurs at a low level (1/15). Per convention and definition, A1 is the target for display technology, as this minor coat protein does not play a role in initiating the life cycle of Qβ phage like the pIII of M13. The maturation protein A2 of Qβ initiates the life cycle by binding to the pilus of the F+ host bacteria. The extension of the A1 protein with a foreign peptide probe recognizes and binds to the target freely, while the A2 initiates the infection. This avoids any disturbance of the complex and the necessity for acidic elution and neutralization prior to infection. The combined use of both the A1 and A2 proteins of Qβ in this display system allows for novel bio-panning, in vitro maturation, and evolution. Additionally, methods for large library size construction have been improved with our directed evolutionary phage display system. This novel phage display technology allows 12 copies of a specific desired peptide to be displayed on the exterior surface of Qβ in uniform distribution at the corners of the phage icosahedron. Through the recently optimized subtractive bio-panning strategy, fusion probes containing up to 80 amino acids altogether with linkers, can be displayed for target selection. Thus, combined uniqueness of its genome, structure, and proteins make the Qβ phage a desirable suitable innovation applicable in affinity maturation and directed evolutionary biotechnology. The evolutionary adaptability of the Qβ phage display strategy is still in its infancy. However, it has the potential to evolve functional domains of the desirable proteins, glycoproteins, and lipoproteins, rendering them superior to their natural counterparts

    Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres (AuNP), silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 hours of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials

    Pathogens and Their Effect on Exosome Biogenesis and Composition

    No full text
    Exosomes are nanosized membrane microvesicles (30–100 nm) that have the capability to communicate intercellularly and transport cell components (i.e., miRNA, mRNA, proteins and DNA). Exosomes are found in nearly every cell type (i.e., mast cells, dendritic, tumor, and macrophages). There have been many studies that have shown the importance of exosome function as well as their unique packaging and targeting abilities. These characteristics make exosomes ideal candidates to act as biomarkers and therapeutics for disease. We will discuss the biogenesis, composition, and relationship of exosomes with non-viral microbial infections including gram-negative bacteria, gram-positive bacteria, Leishmania and Trypanosoma cruzi

    Function of the RNA Coliphage Qβ Proteins in Medical In Vitro Evolution

    No full text
    Qβ is a positive (+) single-stranded RNA bacteriophage covered by a 25 nm icosahedral shell. Qβ belongs to the family of Leviviridae and is found throughout the world (bacterial isolates and sewage). The genome of Qβ is about 4.2 kb, coding for four proteins. This genome is surrounded by 180 copies of coat proteins (capsomers) each comprised of 132 residues of amino acids. The other proteins, the subunit II (β) of a replicase, the maturation protein (A2) and the read-through or minor coat protein (A1), play a key role in phage infection. With the replicase protein, which lacks proofreading activity, as well as its short replication time, and high population size, Qβ phage has attractive features for in vitro evolution. The A1 protein gene shares the same initiation codon with the coat protein gene and is produced during translation when the coat protein’s UGA stop codon triplet (about 400 nucleotides from the initiation) is suppressed by a low level of ribosome misincorporation of tryptophan. Thus, A1 is termed the read-through protein. This RNA phage platform technology not only serves to display foreign peptides but is also exceptionally suited to address questions about in vitro evolution. The C-terminus of A1 protein confers to this RNA phage platform an exceptional feature of not only a linker for foreign peptide to be displayed also a model for evolution. This platform was used to present a peptide library of the G-H loop of the capsid region P1 of the foot-and-mouth disease virus (FMDV) called VP1 protein. The library was exposed on the exterior surface of Qβ phages, evolved and selected with the monoclonal antibodies (mAbs) SD6 of the FMDV. These hybrid phages could principally be good candidates for FMDV vaccine development. Separately, the membrane proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) epitopes was fused with the A1 proteins and exposed on the Qβ phage exterior surface. The engineered phages with MPER epitopes were recognized by anti-MPER specific antibodies. This system could be used to overcome the challenge of effective presentation of MPER to the immune system. A key portion of this linear epitope could be randomized and evolved with the Qβ system. Overall, antigens and epitopes of RNA viruses relevant to public health can be randomized, evolved and selected in pools using the proposed Qβ model to overcome their plasticity and the challenge of vaccine development. Major epitopes of a particular virus can be engineered or displayed on the Qβ phage surface and used for vaccine efficacy evaluation, thus avoiding the use of live viruses

    A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4+ effector (CD44high CD62Llow) and memory (CD44high CD62Lhigh) T-cells in immunized mice

    No full text
    Vaccine developmental strategies are utilizing antigens encapsulated in biodegradable polymeric nanoparticles. Here, we developed a Chlamydia nanovaccine (PLGA-rMOMP) by encapsulating its recombinant major outer membrane protein (rMOMP) in the extended-releasing and self-adjuvanting PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. PLGA-rMOMP was small (nanometer size), round and smooth, thermally stable, and exhibited a sustained release of rMOMP. Stimulation of mouse primary dendritic cells (DCs) with PLGA-rMOMP augmented endosome processing, induced Th1 cytokines (IL-6 and IL-12p40), and expression of MHC-II and co-stimulatory (CD40, CD80, and CD86) molecules. BALB/c mice immunized with PLGA-rMOMP produced enhanced CD4+ T-cells-derived memory (CD44high CD62Lhigh), and effector (CD44high CD62Llow) phenotypes and functional antigen-specific serum IgG antibodies. In vivo biodistribution of PLGA-rMOMP revealed its localization within lymph nodes, suggesting migration from the injection site via DCs. Our data provide evidence that the PLGA (85:15) nanovaccine activates DCs and augments Chlamydia-specific rMOMP adaptive immune responses that are worthy of efficacy testing.Fil: Sahu, Rojalin. University of Alabama at Birmingahm; Estados UnidosFil: Dixit, Saurabh. University of Alabama at Birmingahm; Estados UnidosFil: Verma, Richa. University of Alabama at Birmingahm; Estados UnidosFil: Duncan, Christopher C.. University of Alabama at Birmingahm; Estados UnidosFil: Coats, Mamie T.. University of Alabama at Birmingahm; Estados UnidosFil: Giambartolomei, Guillermo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Inmunología, Genética y Metabolismo. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Inmunología, Genética y Metabolismo; ArgentinaFil: Singh, Shree R.. University of Alabama at Birmingahm; Estados UnidosFil: Dennis, Vida A.. University of Alabama at Birmingahm; Estados Unido

    The Effects of CFTR and Mucoid Phenotype on Susceptibility and Innate Immune Responses in a Mouse Model of Pneumococcal Lung Disease.

    No full text
    Recent studies have reported the isolation of highly mucoid serotype 3 Streptococcus pneumoniae (Sp) from the respiratory tracts of children with cystic fibrosis (CF). Whether these highly mucoid Sp contribute to, or are associated with, respiratory failure among patients with CF remains unknown. Other mucoid bacteria, predominately Pseudomonas aeruginosa, are associated with CF respiratory decline. We used a mouse model of CF to study pneumococcal pneumonia with highly mucoid serotype 3 and non-mucoid serotype 19A Sp isolates. We investigated susceptibility to infection, survival, and bacterial counts from bronchoaviolar lavage samples and lung homogenates, as well as associated inflammatory cytokines at the site of infection, and lung pathology. Congenic CFTR-/- mice and wild-type (WT)-mice were infected intranasally with CHB756, CHB1126, and WU2 (highly mucoid capsular serotype 3, intermediately mucoid serotype 3, and less mucoid serotype 3, respectively), or CHB1058 (non-mucoid serotype 19A). BAL, lung homogenates, and blood were collected from mice 5 days post-infection. Higher CFU recovery and shorter survival were observed following infection of CFTR-/- mice with CHB756 compared to infection with CHB1126, WU2, or CHB1058 (P≤0.001). Additionally, CFTR-/- mice infected with CHB756 and CHB1126 were more susceptible to infection than WT-mice (P≤0.05). Between CFTR-/- mice and WT-mice, no significant differences in TNF-α, CXCL1/KC concentrations, or lung histopathology were observed. Our results indicate that highly mucoid type 3 Sp causes more severe lung disease than non-mucoid Sp, and does so more readily in the lungs of CFTR-/- than WT-mice

    The anti-microbial peptide TP359 attenuates inflammation in human lung cells infected with Pseudomonas aeruginosa via TLR5 and MAPK pathways.

    No full text
    Pseudomonas aeruginosa infection induces vigorous inflammatory mediators secreted by epithelial cells, which do not necessarily eradicate the pathogen. Nonetheless, it reduces lung function due to significant airway damage, most importantly in cystic fibrosis patients. Recently, we published that TP359, a proprietary cationic peptide had potent bactericidal effects against P. aeruginosa, which were mediated by down-regulating its outer membrane biogenesis genes. Herein, we hypothesized that TP359 bactericidal effects could also serve to regulate P. aeruginosa-induced lung inflammation. We explored this hypothesis by infecting human A549 lung cells with live P. aeruginosa non-isogenic, mucoid and non-mucoid strains and assessed the capacity of TP359 to regulate the levels of elicited TNFα, IL-6 and IL-8 inflammatory cytokines. In all instances, the mucoid strain elicited higher concentrations of cytokines in comparison to the non-mucoid strain, and TP359 dose-dependently down-regulated their respective levels, suggesting its regulation of lung inflammation. Surprisingly, P. aeruginosa flagellin, and not its lipopolysaccharide moiety, was the primary inducer of inflammatory cytokines in lung cells, which were similarly down-regulated by TP359. Blocking of TLR5, the putative flagellin receptor, completely abrogated the capacity of infected lung cells to secrete cytokines, underscoring that TP359 regulates inflammation via the TLR5-dependent signaling pathway. Downstream pathway-specific inhibition studies further revealed that the MAPK pathway, essentially p38 and JNK are necessary for induction of P. aeruginosa elicited inflammatory cytokines and their down-regulation by TP359. Collectively, our data provides evidence to support exploring the relevancy of TP359 as an anti-microbial and anti-inflammatory agent against P. aeruginosa for clinical applications

    Effects of Pseudomonas aeruginosa on Microglial-Derived Extracellular Vesicle Biogenesis and Composition

    No full text
    The packaging of molecular constituents inside extracellular vesicles (EVs) allows them to participate in intercellular communication and the transfer of biological molecules, however the role of EVs during bacterial infection is poorly understood. The goal of this study was to examine the effects of Pseudomonas aeruginosa (P. aeruginosa) infection on the biogenesis and composition of EVs derived from the mouse microglia cell line, BV-2. BV-2 cells were cultured in exosome-free media and infected with 0, 1.3 × 104, or 2.6 × 104 colony forming units per milliliter P. aeruginosa for 72 h. The results indicated that compared with the control group, BV-2 cell viability significantly decreased after P. aeruginosa infection and BV-2-derived EVs concentration decreased significantly in the P. aeruginosa-infected group. P. aeruginosa infection significantly decreased chemokine ligand 4 messenger RNA in BV-2-derived infected EVs, compared with the control group (p ≤ 0.05). This study also revealed that heat shock protein 70 (p ≤ 0.05) and heat shock protein 90β (p ≤ 0.001) levels of expression within EVs increased after P. aeruginosa infection. EV treatment with EVs derived from P. aeruginosa infection reduced cell viability of BV-2 cells. P. aeruginosa infection alters the expression of specific proteins and mRNA in EVs. Our study suggests that P. aeruginosa infection modulates EV biogenesis and composition, which may influence bacterial pathogenesis and infection

    Cytokine production after intranasal infection with mucoid <i>Sp</i> isolate CHB756.

    No full text
    <p>CFTR<sup>–/–</sup> mice and WT-mice were infected with 1x10<sup>5</sup> CFU of bacteria (n = 6–7). CFUs were quantified from lung homogenates (A) and BAL fluid (B) 24 hours post-infection. TNF-α production was measured by ELISA in lung homogenates (C) in BAL (D). CXCL1/KC production was measured by ELISA in lung homogenates (E) and in BAL (F). Each dot represents the data for one mouse. The horizontal lines indicate the median for each group. Experiments were repeated at least twice. <i>P-values≥ 0</i>.<i>05</i> are not shown.</p
    corecore