175 research outputs found

    Oral ferroportin inhibitor vamifeport for improving iron homeostasis and erythropoiesis in Ξ²-thalassemia: current evidence and future clinical development

    Get PDF
    Introduction: In Ξ²-thalassemia, imbalanced globin synthesis causes reduced red blood cell survival and ineffective erythropoiesis. Suppressed hepcidin levels increase ferroportin-mediated iron transport in enterocytes, causing increased iron absorption and potentially iron overload. Low hepcidin also stimulates ferroportin-mediated iron release from macrophages, increasing transferrin saturation (TSAT), potentially forming non-transferrin-bound iron, which can be toxic. Modulating the hepcidin–ferroportin axis is an attractive strategy to improve ineffective erythropoiesis and limit the potential tissue damage resulting from iron overload. There are no oral Ξ²-thalassemia treatments that consistently ameliorate anemia and prevent iron overload. / Areas covered: The preclinical and clinical development of vamifeport (VIT-2763), a novel ferroportin inhibitor, was reviewed. PubMed, EMBASE and ClinicalTrials.gov were searched using the search term β€˜VIT-2763ΚΉ. / Expert opinion: Vamifeport is the first oral ferroportin inhibitor in clinical development. In healthy volunteers, vamifeport had comparable safety to placebo, was well tolerated and rapidly decreased iron levels and reduced TSAT, consistent with observations in preclinical models. Data from ongoing/planned Phase II studies are critical to define its potential in Ξ²-thalassemia and other conditions associated with iron overabsorption and/or ineffective erythropoiesis. If vamifeport potentially increases hemoglobin and reduces iron-related parameters, it could be a suitable treatment for non-transfusion-dependent and transfusion-dependent Ξ²-thalassemia

    Identifying component modules

    Get PDF
    A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    C-Kit Binding Properties of Hesperidin (a Major Component of KMP6) as a Potential Anti-Allergic Agent

    Get PDF
    Accumulation of mast cells can be causally related to several allergic inflammations. Stem cell factor (SCF) as a mast cell chemotaxin induces mast cell migration. To clarify a new effect of Pyeongwee-San extract (KMP6, a drug for indigestion) for the treatment of allergy, we investigated the effects of KMP6 on SCF-induced migration of rat peritoneal mast cells (RPMCs). A molecular docking simulation showed that hesperidin, a major component of KMP6, controls the SCF and c-kit binding by interaction with the active site of the c-kit. KMP6 and hesperidin significantly inhibited SCF-induced migration of RPMCs (P<0.05). The ability of the SCF to enhance morphological alteration and F-actin formation was also abolished by treatment with KMP6 or hesperidin. KMP6 and hesperidin inhibited SCF-induced p38 MAPK activation. In addition, SCF-induced inflammatory cytokine production was significantly inhibited by treatment with KMP6 or hesperidin (P<0.05). Our results show for the first time that KMP6 potently regulates SCF-induced migration, p38 MAPK activation and inflammatory cytokines production through hindrance of SCF and c-kit binding in RPMCs. Such modulation may have functional consequences during KMP6 treatment, especially mast cell-mediated allergic inflammation disorders

    Exploring cross-sectional associations between common childhood illness, housing and social conditions in remote Australian Aboriginal communities

    Get PDF
    Background:\ud There is limited epidemiological research that provides insight into the complex web of causative and moderating factors that links housing conditions to a variety of poor health outcomes. This study explores the relationship between housing conditions (with a primary focus on the functional state of infrastructure) and common childhood illness in remote Australian Aboriginal communities for the purpose of informing development of housing interventions to improve child health.\ud \ud Methods:\ud Hierarchical multi-level analysis of association between carer report of common childhood illnesses and functional and hygienic state of housing infrastructure, socio-economic, psychosocial and health related behaviours using baseline survey data from a housing intervention study.\ud \ud Results:\ud Multivariate analysis showed a strong independent association between report of respiratory infection and overall functional condition of the house (Odds Ratio (OR) 3.00; 95%CI 1.36-6.63), but no significant association between report of other illnesses and the overall functional condition or the functional condition of infrastructure required for specific healthy living practices. Associations between report of child illness and secondary explanatory variables which showed an OR of 2 or more included: for skin infection - evidence of poor temperature control in the house (OR 3.25; 95%CI 1.06-9.94), evidence of pests and vermin in the house (OR 2.88; 95%CI 1.25-6.60); for respiratory infection - breastfeeding in infancy (OR 0.27; 95%CI 0.14-0.49); for diarrhoea/vomiting - hygienic state of food preparation and storage areas (OR 2.10; 95%CI 1.10-4.00); for ear infection - child care attendance (OR 2.25; 95%CI 1.26-3.99).\ud \ud Conclusion:\ud These findings add to other evidence that building programs need to be supported by a range of other social and behavioural interventions for potential health gains to be more fully realised

    Heterochronic Shift in Hox-Mediated Activation of Sonic hedgehog Leads to Morphological Changes during Fin Development

    Get PDF
    We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution

    Decline of Birds in a Human Modified Coastal Dune Forest Landscape in South Africa

    Get PDF
    Previous studies demonstrate that old-growth forest remnants and vegetation regenerating after anthropogenic disturbance provide habitat for birds in a human modified coastal dune forest landscape in northern KwaZulu-Natal, South Africa. However, occurrence does not ensure persistence. Based on a 13-year monitoring database we calculated population trends for 37 bird species and general trends in overall bird density in different vegetation types. We evaluated species' characteristics as covariates of population trend and assessed changes in rainfall and proportional area and survey coverage per vegetation type. 76% of species assessed have declined, 57% significantly so at an average rate of 13.9% per year. Overall, bird density has fallen at 12.2% per year across old-growth forest and woody regenerating vegetation types. Changes in proportional area and coverage per vegetation type may partly explain trends for a few species but are unlikely to account for most. Below average rainfall may have contributed to bird declines. However, other possibilities warrant further investigation. Species with larger range extents tended to decline more sharply than did others, and these species may be responding to environmental changes on a broader geographical scale. Our results cast doubt on the future persistence of birds in this human modified landscape. More research is needed to elucidate the mechanisms driving population decline in the study area and to investigate whether the declines identified here are more widespread across the region and perhaps the continent

    A Mutation in MRH2 Kinesin Enhances the Root Hair Tip Growth Defect Caused by Constitutively Activated ROP2 Small GTPase in Arabidopsis

    Get PDF
    Root hair tip growth provides a unique model system for the study of plant cell polarity. Transgenic plants expressing constitutively active (CA) forms of ROP (Rho-of-plants) GTPases have been shown to cause the disruption of root hair polarity likely as a result of the alteration of actin filaments (AF) and microtubules (MT) organization. Towards understanding the mechanism by which ROP controls the cytoskeletal organization during root hair tip growth, we have screened for CA-rop2 suppressors or enhancers using CA1-1, a transgenic line that expresses CA-rop2 and shows only mild disruption of tip growth. Here, we report the characterization of a CA-rop2 enhancer (cae1-1 CA1-1) that exhibits bulbous root hairs. The cae1-1 mutation on its own caused a waving and branching root hair phenotype. CAE1 encodes the root hair growth-related, ARM domain-containing kinesin-like protein MRH2 (and thus cae1-1 was renamed to mrh2-3). Cortical MT displayed fragmentation and random orientation in mrh2 root hairs. Consistently, the MT-stabilizing drug taxol could partially rescue the wavy root hair phenotype of mrh2-3, and the MT-depolymerizing drug Oryzalin slightly enhanced the root hair tip growth defect in CA1-1. Interestingly, the addition of the actin-depolymerizing drug Latrunculin B further enhanced the Oryzalin effect. This indicates that the cross-talk of MT and AF organization is important for the mrh2-3 CA1-1 phenotype. Although we did not observe an apparent effect of the MRH2 mutation in AF organization, we found that mrh2-3 root hair growth was more sensitive to Latrunculin B. Moreover, an ARM domain-containing MRH2 fragment could bind to the polymerized actin in vitro. Therefore, our genetic analyses, together with cell biological and pharmacological evidence, suggest that the plant-specific kinesin-related protein MRH2 is an important component that controls MT organization and is likely involved in the ROP2 GTPase-controlled coordination of AF and MT during polarized growth of root hairs

    Identifying and Prioritizing Greater Sage-Grouse Nesting and Brood-Rearing Habitat for Conservation in Human-Modified Landscapes

    Get PDF
    BACKGROUND: Balancing animal conservation and human use of the landscape is an ongoing scientific and practical challenge throughout the world. We investigated reproductive success in female greater sage-grouse (Centrocercus urophasianus) relative to seasonal patterns of resource selection, with the larger goal of developing a spatially-explicit framework for managing human activity and sage-grouse conservation at the landscape level. METHODOLOGY/PRINCIPAL FINDINGS: We integrated field-observation, Global Positioning Systems telemetry, and statistical modeling to quantify the spatial pattern of occurrence and risk during nesting and brood-rearing. We linked occurrence and risk models to provide spatially-explicit indices of habitat-performance relationships. As part of the analysis, we offer novel biological information on resource selection during egg-laying, incubation, and night. The spatial pattern of occurrence during all reproductive phases was driven largely by selection or avoidance of terrain features and vegetation, with little variation explained by anthropogenic features. Specifically, sage-grouse consistently avoided rough terrain, selected for moderate shrub cover at the patch level (within 90 m(2)), and selected for mesic habitat in mid and late brood-rearing phases. In contrast, risk of nest and brood failure was structured by proximity to anthropogenic features including natural gas wells and human-created mesic areas, as well as vegetation features such as shrub cover. CONCLUSIONS/SIGNIFICANCE: Risk in this and perhaps other human-modified landscapes is a top-down (i.e., human-mediated) process that would most effectively be minimized by developing a better understanding of specific mechanisms (e.g., predator subsidization) driving observed patterns, and using habitat-performance indices such as those developed herein for spatially-explicit guidance of conservation intervention. Working under the hypothesis that industrial activity structures risk by enhancing predator abundance or effectiveness, we offer specific recommendations for maintaining high-performance habitat and reducing low-performance habitat, particularly relative to the nesting phase, by managing key high-risk anthropogenic features such as industrial infrastructure and water developments

    Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    Get PDF
    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens
    • …
    corecore