6 research outputs found

    On the proof of recursive Vogler algorithm for multiple knife-edge diffraction

    Get PDF
    We consider the problem of multiple knife-edge diffraction estimation which is a fundamental task in many wireless communication applications. So far, one of the most accurate methods for this problem is the Vogler one whose recursive implementation is efficient to reduce the high computational complexity of the direct one. However, in the original report, Vogler only presented the final result of the recursive algorithm without a rigorous mathematical proof, thus making the method difficult to understand and implement in practice. To tackle this shortcoming, we first analyze the mathematical structure of the problem and then present a formal proof of the result. To gain intuition of the proof and the key steps, we provide a simplified study case of four knife-edges. The insight from our proposed analysis and proof can be used to obtain a comprehensive interpretation, initiate a practical implementation and develop new efficient algorithms with similar structure

    Optimal High-Order Method of Moment combined with NURBS for the scattering by a 2D cylinder.

    Get PDF
    This paper deals with the High-Order Method of Moments (HO-MoM) combined with Non-Uniform Rational Basis Splines (NURBS) segments to evaluate the scattering by a 2D cylinder. The authors mainly focus upon the influence of the different parameters (polynomial basis, order, mesh length, curvature, polarization,...) and try to determine if a optimal choice exists or not for the convergence speed

    Minimum entropy approach for carrier frequency recovery

    No full text
    corecore