
ADVANCED ELECTROMAGNETICS, Vol. 2, No. 1, February 2013

Optimal High-Order Method of Moments combined with NURBS for the
scattering by a 2D cylinder.

Refzul Khairi, Arnaud Coatanhay, Ali Khenchaf

Lab-STICC UMR CNRS 6285, ENSTA Bretagne,
2 rue François Verny, 29806 Brest cedex 9, France.

*corresponding author, E-mail: refzul.khairi@ensta-bretagne.fr

Abstract
This paper deals with the High-Order Method of Moments
(HO-MoM) combined with Non-Uniform Rational Basis
Splines (NURBS) segments to evaluate the scattering by a
2D cylinder. The authors mainly focus upon the influence
of the different parameters (polynomial basis, order, mesh
length, curvature, polarization,...) and try to determine if a
optimal choice exists for the convergence speed.

1. Introduction
The Boundary Element Method (BEM) usually called the
Method of Moments (MoM) has definitely become a well
established numerical approach to model the electromag-
netic waves scattering. The reduction of the problem di-
mension by one clearly appears as a major reason for the
success of MoM [1]. Basically, this method induces a
discretization of field integral equations in the vicinity of
boundaries, and usually approximates the surface currents
using constant or linear subsectional basis functions (pulse
or triangle functions for 2D and RWG or rooftop functions
for 3D). It is generally admitted that MoM provides a reli-
able estimation where the size of the elements in the mesh
is lower than ten percent of the wavelength (λ/10).

For the sake of optimal performance, High-Order MoM
(HO-MoM), involving high order polynomial functions,
has been intensively explored for more than a decade
[2, 3, 4, 5]. In many configurations, the relative accel-
eration with respect to the basic MoM has been evalu-
ated [6]. It is noteworthy that, in those publications, the
high order models only concern the electromagnetic com-
ponents (currents and scattered fields) of the scattering is-
sue. The geometry of the scatterer always remains a mesh
of piecewise linear functions. More precisely, the standard
meshing technique decomposes the scatterer’s boundaries
to sub-domains of straight lines (2D problem) or planar tri-
angles/quadrilaterals (3D problem). For plane and low cur-
vature objects, this approach does not raise particular prob-
lems.

For a high curvature scatterer, the criterion λ/10 for
the mesh elementary size often imposed by MoM is far
from being enough to obtain reliable estimation of the scat-
tered fields. In this situation, MoM and standard HO-
MoM require very small sized elements and the number
of unknowns can severely increase. A solution consists in

modeling the geometry of the scatterer’s boundaries with
Non-Uniform Rational Basis Splines (NURBS) elements.
NURBS elements approximate the geometry using a high
order polynomial basis and easily model high curvature
objects. Then, the combination of the HO-MOM with
NURBS meshing constitutes a really powerful approach
whose advantages are quite recently studied [7, 8].

Nevertheless, NURBS meshing combined with HO-
MoM constitutes a quite complex method. The number
of unknowns depends on the number of the elements in
the mesh (C) and the order of polynomial basis function
(N ). More, this approach can be applied with continuous
or discontinuous polynomial functions. Finally, the deter-
mination of the best compromise that optimize the accuracy
of this numerical estimation for a given scatterer obviously
remains a difficult task. As a matter of fact, this optimal
compromise notably depends upon the characteristics of the
scatterers, the electromagnetic characteristics (polarization
for instance) or the position of the observation (far field ver-
sus near field). For the sake of clarity, we consider that it is
important to evaluate the influence of the different parame-
ters for the HO-MOM approach combined with NURBS in
the case of canonical scatterers.

With this purpose in mind, this paper deals with the HO-
MoM+NURBS modeling of the scattering by a very basic
2-dimensional scatterer. In fact, HO-MoM+NURBS is used
to simulate the scattering in TM and TE polarization for a
PEC circle. The accuracy of the method is investigated by
comparing the surface currents and the Radar Cross Sec-
tions (RCS) with the analytical solution obtained by modal
decomposition (2D Mie theory). The Radar Cross Section
appears as a reliable description of the far field scattering.
On the opposite, the surface current is far more related to
the very near field scattering.

In this paper, we specifically focus on the convergence
to the numerical simulation at different levels, for different
polarizations and for two components (surface currents and
RCS). To a lesser extent, the computational time as a func-
tion of segment number (C) and the order of basis function
(N ) is also presented.

In the following section, we point out the notion of
curvature and the relation with NURBS curve expression
adapted for our computational electromagnetic method. In
section 3, the formulation of HO-MoM on NURBS curve
is introduced and the polynomial expressions are explicitly
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presented. The choice of polynomial basis function is eval-
uated in section 4. Finally, the numerical results is given
and commented in the last section.

2. Scatterer with high curvature
Standard MoM and HO-MoM are commonly used in many
applications and the so-obtained numerical results can be
the most of the time considered as a reliable model to sim-
ulate the scattered field. However, where the geometry of
the scatters is complex with high curvature component and
with no particular symmetry [9], the MoM approaches of-
ten fail.

2.1. Modeling the curvature

r

P

Figure 1: Curvature of a curve

As illustrated in the figure (1), the local curvature (Cp),
given by Cp = 1

r (where r is radius of the osculating cir-
cle), must be evaluated with respect to the wavelength λ
of the electromagnetic wave. For high curvature scatterers
(Cp � 1

λ ), the scattering induces complex creeping wave
phenomenons [10, 12, 13]. In these situations, the numer-
ical methods such as standard MoM and HO-MoM con-
stitute a very slowly convergent algorithms, and an accu-
rate simulation requires a mesh with a very high density of
nodes in the curved area. A fully detailed analysis of the er-
ror induced by the curvature for different MoM approaches
in 2 dimension is studied by Davis et al [11].

To overcome the convergence issue for curved scatter-
ers, a more recent way is to explicitly take into account the
curvature and the global geometry of the scatterer into the
electromagnetic model, see [14] for instance. In this paper,
we show that NURBS forms a relevant tool to model curved
scatterers.

2.2. NURBS curve

Non Uniform Rational Basis Splines (NURBS) is a math-
ematical model for representing curves and surfaces espe-
cially for the complex geometry [15]. Each point of the
NURBS curve is computed by taking a weighted average
of given control points. The control points determine the
shape of the curve. Figure (2) illustrates the algorithm to
construct a NURBS curve from a set of control points.

By the lack of numerical stability to determine its
derivation, NURBS curve is needed to be transformed to
Bézier format [7]. The mathematical expression for a

Figure 2: NURBS curve construction

NURBS curve in this format is

ρ(v) =

K∑
k=0

wkP kB
K
k (v)

K∑
k=0

wkBKk (v)

, v ∈ ]0 1[ (1)

where P k are the control points, wk are the weights and
BKk (v) are the Bernstein polynomials of degreeK with k =
0, 1, 2, · · · ,K:

BKk (v) =
K!

k!(K − 1)!
vk(1− v)K−k, v ∈ ]0 1[ (2)

The NURBS curve is here expressed for v ∈ ]0 1[. The
basis functions used in this work are the modified Legen-
dre polynomials, defined in u ∈ ]−1 1[ (section 4). Thus
we need to convert the equation (1) to this interval by the
relation u = 2v − 1 [7]:

ρ(u) =

K∑
k=0

wkP kB
K
k (0.5u+ 0.5)

K∑
k=0

wkBKk (0.5u+ 0.5)

, u ∈ ]−1 1[ (3)

From (3), we can easily find the covariant unitary vec-
tor, defined as the derivation of the NURBS curve in u.

a(u) =
dρ(u)

du
(4)

NURBS preserves the surface normal and radius of cur-
vature at every point by adjusting the control points. Fig-
ure (3) shows the comparison of the meshing by the stan-
dard technique (straight line) and NURBS curve. Despite a
larger mesh length, we notice that the NURBS model pro-
vides a far better accuracy.

Development of NURBS began in the 1950s, but the
integration of the geometrical tools given by NURBS for
the electromagnetic scattering models was first introduced
in 1994 by Valle et al [16].
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Figure 3: Comparaison of 2D mesh (i) 20 Straight line (ii)
6 NURBS curve

3. High-Order Method of Moments on
NURBS Curve

The first step in MoM application involves the development
of the integral equation of the system [17]. Using Huy-
gens’ principle, the electromagnetic system is represented
in the form of a Electric Field Integral Equation (EFIE) and
a Magnetic Field Integral Equation (MFIE). In 2D problem,
the vector field can be simplified to the scalar field accord-
ing to Transverse Magnetic (TM) and Transverse Electric
(TE) polarization. So, EFIE or MFIE can be used to model
these two polarization problems. Better in numerical con-
dition, we suggest to solve the TM polarization with EFIE
and TE polarization with MFIE.

First and foremost, comparing some articles and books
on propagation theory, let us note the inconsistent use of
TM and TE polarization [18]. So, it is necessary to mention
that the convention applied in this article is the same as used
by Peterson [19] or Gibson [1] in contrast to Tsang [20] or
Naqvi [18]. If the propagation vector k lies in x̂− ẑ plane,
the TM/TE polarization refers to the electric/magnetic field
being in ŷ direction as shown in figure (4). The position in
the x̂− ẑ plan is given by the vector ρ(xx̂, zẑ).
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Figure 4: Convention of TM and TE polarization

In the next section, we will briefly present the EFIE for
TM polarization and MFIE for TE polarization in case of
PEC object. The formulation for a dielectric can be ob-
tained by combining of these two form.

3.1. EFIE for TM Polarization

The EFIE in TM polarization for a PEC object is presented
as [1]:

Eincy (ρ) = iωµ

∫
C

Jy(ρ
′)G (ρ, ρ′) dρ′ (5)

where µ is the permeability of free space, ω is the angular
frequency of the wave, G(ρ, ρ′) is the 2D Green function,
ρ′ and ρ are the source and observation points. The incident
plane wave is given by Eincy (ρ) = e−ik(x sin θi−z cos θi).

For the HO-MoM on NURBS curves, the current is ex-
panded in arbitrary u coordinate as:

Jy(ρ
′(u′)) =

1

|a(u′)|

N∑
n=0

bnPn(u
′) (6)

where |a(u′)| is jacobian of coordinate transformation,
Pn(u

′) are polynomial basis function of order n and bn are
the unknown coefficients.

Using the Galerkin procedure, the EFIE is transformed
to the matrix equation

[Zm,n]p,q [bn]q = [Vm]p (7)

m,n are the order of testing and basis function respectively
and p, q are observation and source curve respectively. The
component for each matrix are:

[Vm]p =

∫
Cp

Pm (u)Eincy (ρ (u)) du (8)

[Zmn]pq =

∫
Cp

Pm (u)

∫
Cq

Pn (u
′) iωµA

G (ρ (u) , ρ′ (u′)) du′du (9)

3.2. MFIE for TE polarization

The MFIE for TE polarization for a PEC object is presented
as [1]:

Hinc
y (ρ) = −Jt(ρ)

2
+

∫
C

Jt(ρ
′)

[n̂(ρ′) · ∇′G (ρ, ρ′)] dρ′ (10)

The incident magnetic plane wave is given by Hinc
y (ρ) =

e−ik(x sin θi−z cos θi). The current is expanded in coordinate
u as:

Jt (ρ
′(u′)) =

1

|a(u′)|

N∑
n=0

bnPn(u
′) (11)

The Galerkin procedure is used to transform the MFIE
to the matrix equation:

[Zm,n]p,q [bn]q = [Vm]p (12)

with the matrix V :

[Vm]p =

∫
Cp

Pm(u)Hinc
y (ρ(u))du (13)

When p = q and u = u′, the matrix Z components are:

35



[Zm,n]p,q = −0.5
∫
Cpq

Pm(u)Pm(u)du (14)

and for the other conditions:

[Zmn]p =

∫
Cp

Pm(u)

∫
Cq

Pn(u
′)

[n̂(ρ′) · ∇′GA(ρ (u) , ρ′ (u′))] du′du(15)

The matrices V and Z for EFIE and MFIE are con-
structed using Gaussian-Quadrature integration method
[21]. According to [22], the polynomials of order 2N − 1
can be integrated exactly by N points Gaussian quadrature
rules.

The fundamental difference between equations (10) and
(5) is the fact that the MFIE equation involves the derivative
of the Green function. We could think that this point have a
significant importance for the choice between a continuous
and a discontinuous functional basis.

4. High-Order Basis function
Basis functions for MoM can be categorized to entire-
domain and subsectional [1]. Entire-domain basis functions
are not practical and rarely used. Subsectional basis func-
tions involves the discretization of the domain in to some
subsections. The polynomials are introduced to approach
the surface currents in each subsection. In the basic MoM,
the polynomial are limited to lower order N = 0 (pulse)
if the continuity is not required and N = 1 (triangle) if
the continuity need to be imposed. High-Order MoM use
higher-order polynomial N ≥ 2 as the basis functions.

To ensure the computational convergence, the basis
function must to be in the same function space as the sur-
face currents. Since the currents in EFIE equation (5) and
MFIE (10) are in the integral form, the basis functions have
to be integrable, but do they have to be continuous? The ad-
vantage of the EFIE for TM polarization and the MFIE for
TE polarization is the extinction of the currents divergence
from the integral equations so that the basis functions can
be discontinuous (L2 space). This is not the case in EFIE
for TE polarization which requires the continuity of the ba-
sis.

Since the basis functions in our case are in L2 space,
a priory, all type of polynomials can be chosen. Hamilton
et all [23] used the product of Jacoby and Legendre poly-
nomials. Although they did not impose the continuity, the
results are corrects for EFIE in TM polarization.

However, the continuity is still important tools to reduce
the number of unknowns [2] and it is interesting to see the
influence of the imposition of the continuity. Djordevic and
Narsos [24] have defined three polynomial for this propose.
We can also include the Bernstein polynomial in to this cat-
egory. However, those polynomials are not orthogonal and
leads to severely ill-conditioned matrices [2]. The modified
Legendre polynomials developed by Jorgensen seems to be

the best solution. They ensure the orthogonality and can be
used to impose the continuity. N -order modified Legendre
polynomials are given by:

Pn =

 1− u n = 0
1 + u n = 1

Ln(u)− Ln−2(u) n ≥ 2
(16)

where n = 1, 2 · · · , N and u ∈ ]−1 1[ and Ln are the
Legendre polynomials that can be expressed in Rodrigues’
formulas:

Ln(u) =
1

2nn!

dn

dun

[(
u2 − 1

)n]
(17)
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Figure 5: 5th Order of Modified Legendre Polynomials

Figure (5) shows the 5th order modified Legendre poly-
nomials introduced in one subsection. The continuity is
imposed by adjusting two first order of polynomials with
neighboring subsection as shown in figure (6). The higher
order term (n ≥ 2) are zeros in the extremities and do not
contribute to continuity of the currents. In this article, we
will study the two case: discontinuous and continuous ba-
sis function. The pulse basis function are added as lowest
order (N = 0) for the discontinuous basis function. For the
continuous basis, the lowest order is the triangle (N = 1)
function.

segment 1 segment 2segment 1 segment 2

discontinuous continuous

n=0n=1
n=1n=0 n=0 n=1

n=2 n=2n=2 n=2

n=0
n=1

Figure 6: Two types basis functions (i) discontinuous (ii)
continuous
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5. Numerical results
By definition, the notion of curvature is linked to the ra-
dius of the circle and can be analyzed as a function of the
wavelength. It is justifiable to investigate the performance
of HO-MoM+NURBS curve for this canonical geometry.

The analytical solution of electromagnetic scattering for
a circle is given by modal theory (Mie theory [25]) and is
expressed by the sum of Bessel and Hankel functions [1,
26, 27, 28, 29] (the series will be truncated at 30 terms).
The surface currents and RCS computed by this analytical
method, called in the sequel ”exact solution”, will be used
as the reference in our analysis.

The HO-MoM in other side is a numerical method
whose precision depends on many factors: mesh length
(L), basis function orders (N), basis function types (dis-
continuous or continuous), wavelength (λ) etc. To investi-
gate the accuracy of HO-MoM from these factors, we apply
the Normalized Root Mean Square (NRMS) error criterion:

NRMS error =
RMS error

Xref(max)−Xref(min)
× 100% (18)

RMS error =

√√√√ 1

Ns

NS∑
i=1

|X −Xref|2 (19)

where NS is the number of sampling points (360 points in
this work), X are the surface currents or RCS computed by
HO-MoM and Xref are the surface currents or RCS com-
puted from analytical solution.

5.1. Surface Current

To illustrate how HO-MoM+NURBS approximates the sur-
face currents, we take the example of an incident wave
(λ = r) which radiates a PEC circle as shown figure (7).
The surface is represented in 6 NURBS curves with the con-
stant mesh length L.

Incident wave

1

2

34

5

6

r = λ

θ

Figure 7: Scattering problem

Figures (8) show the surface currents in TM polariza-
tion for discontinuous and continuous basis function. For
both basis, we see the big oscillations in the extremities of

the segments. These oscillations decrease by increasing the
order of the basis function.
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Figure 8: (TM polarization) Surface current estimation with
different orders for r = λ, L = λ

Zooming the figure (8) for the order N = 2, we see
clearly the effect of the continuity imposition (figure(9)). In
facts, it reduces the oscillation in extremities of the sections
and gives the best approach of the surface currents in this
zone.

The similar results are found for TE polarization as
shown in figure (10). Obviously, we see the effect of the
imposition of the continuity to reduce the oscillation in ex-
tremities zones.

To study more precisely the influence of the basis func-
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Figure 9: (TM polarization) Surface currents (N = 2) in
the extremity zone

tion order (N), the mesh length (L), and the continuity of
basis function upon the accuracy of the HO-MoM+NURBS
algorithm, we analyze the log plot of surface current error
for different mesh length L : 1 dL, 2 dL, · · · , 15 dL. The
term dL corresponds to the length (λ/10) as used in the
standard MoM.

First, it sounds logical to say that the accuracy of sur-
face currents is better for the higher order basis function and
smaller mesh length. In a global way, the figure (11) seems
to confirm this intuition. Nevertheless, in the TM case and
when L = 1 dL = λ/10, the best result is obtained for an
orderN = 2. Thus in this situation, an optimal order exists.

Not surprisingly, the discontinuous basis functions give
more accurate results than the continuous basis especially
for the lower orders. In fact, by imposing the continuity,
we loss one degree of freedom in the computation of the
coefficients of basis function. It reduces the oscillations in
the vicinity of the segment extremities, but paradoxically, it
decreases the accuracy in global term.

In the figure (12), we focus on the case L = 1 dL =
λ/10, and we evaluate the influence of the ratio wave-
length/radius. For TM polarization, in the same ways as the
figure (11), the error curves reach a minimum points. The
position of this points depends on the wavelength (N = 1
for λ = r/2 and N = 2 for λ = 3r). For TE polarization,
higher order seems to be better and no minimum appears.

In fact, the figure (12) highlights the effect of the cur-
vature. In both cases (TM and TE), a higher curvature
(lower wavelength to radius ratio) induces a loss of pre-
cision using the standard MoM approach (order 0) for the
same wavelength to mesh length ratio (dL = λ/10). For
the TE polarization, the increase of the HO-MoM+NURBS
order clearly compensates the curvature effect. For the TM
polarization, the curve-crossing let us think that he HO-
MoM+NURBS order partly compensates the influence of
the curvature, and a optimal order must be determine as a
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Figure 10: (TE polarization) Surface current estimation
with different orders for r = λ, L = λ

function of the curvature.

5.2. Radar Cross Section

Once the surface currents have been estimated, the Radar
Cross Section (RCS) of the scattered can be evaluated by a
very well known integration process, see for instance [19].

RCS in TM polarization for discontinuous and contin-
uous basis functions is given in figure (13). It is important
to notice a significant difference with regard to the surface
current estimation: the lower orders do not generate os-
cillations. Indeed, the RCS computation is obtained by a
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Figure 11: Log plot of surface current error versus the order
and L for λ = r

integration that considerably attenuates the oscillation phe-
nomena. Comparing the order N = 2 for these both basis,
we note that discontinuous basis function give better results
than the continuous basis. For N = 5, the RCS for two
basis give the good precision. The same behaviors of RCS
are obtained for TE polarization (figure (14)).

In figure (15), we show the accuracy of RCS as a func-
tion of the order (N), mesh lengths (L) and the basis func-
tion types. For TM case, we can underline the fact that
RCS error curves reach a minimum accuracy point contrary
to the TE case.
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Figure 12: Log plot of surface currents error versus the or-
der and λ for L = 1 dL = λ/10

Figure (16) show the error of the RCS for different
wavelengths. It is noting that the behavior of the RCS er-
ror in function of λ is the same as the ones of the surface
currents, but their values are more accurate.

In a global way, the computation of the RCS involves
a far better precision than one obtained for the surface cur-
rent. The speed of convergence in the RCS case is signifi-
cantly greater, and the order of the HO-MoM+NURBS ap-
proach does not need to be so high, especially with discon-
tinuous function basis.
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Figure 13: (TM polarization) RCS estimation with different
orders for r = λ, L = λ

5.3. Computational Time

The numerical simulations in this work were done using
a standard personal computer. To highlight the influence
of order (N) and the mesh length (L) upon the CPU time
consumption, the figure (17) presents the CPU time for TM
case in λ = r. To obtain a standard evaluation, the com-
putation times are normalized by the time of the standard
MoM (N = 0) with 1dL.

In a first approximation, figure (17) suggests that the
computational time is given by the following heuristic for-
mula:

Time = A

(
N + 1

L

)2

(20)
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Figure 14: (TE polarization) RCS estimation with different
orders for r = λ, L = λ

where A is the constant for the CPU. In fact, the integra-
tion point number is one of mainly factor that determine the
computational time. Gaussian Quadrature method allows
us to take a few point number and decrease significantly the
time even for the higher order basis.

Nevertheless, this paper mainly deals with the accuracy
of our HO-MoM+NURBS approach. To avoid biases in-
duced by numerical acceleration process, no such acceler-
ation was applied. In addition, it is noteworthy that the in-
tegrations for HO-MOM can be easily realized in an inde-
pendent way. So the parallel computing significantly mod-
ify the estimation the time consumption in the present case.
This is the reason why our analysis of the CPU time con-
sumption probably needs to be completed by further stud-
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Figure 15: Log plot of RCS error versus the order and dL
for λ = r

ies.

6. Conclusion
Our paper presents the HO-MoM combined with NURBS
segments for the scattering by a circle (2D problem). In this
canonical configuration, we show that the optimal parame-
ters for the HO-MoM with NURBS depend on what the ob-
server want to evaluate. The high order basis is not always
the best in the convergence speed. In many situation, the
optimal order exists and do not exceed several units. Even
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Figure 16: Log plot of RCS error versus the order and λ for
L = 1 dL = λ/10

for a basic canonical scatterer, the optimal order (N) is sig-
nificantly influenced by the polarization, the mesh length
(L), the wavelength (λ), the curvature and the distance of
the observation (far versus very near field).

We have also shown that the influence of the polynomial
basis (discontinuous/continuous) is only relevant where the
order is null or very weak.

Finally, to establish the best compromise in practice, we
have introduced an evaluation of the computational time
and we have pointed the fact that the HO-MoM approach
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Figure 17: Log-log plot of computational time

with a larger dL could be equivalent in CPU time as the
standard MoM with 1dL.

In future studies, we will investigate HO-MoM with
NURBS method in 3D problem and for more complex ob-
ject.
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