12,925 research outputs found

    Ground state of medium-heavy doubly-closed shell nuclei in correlated basis function theory

    Full text link
    The correlated basis function theory is applied to the study of medium-heavy doubly closed shell nuclei with different wave functions for protons and neutrons and in the jj coupling scheme. State dependent correlations including tensor correlations are used. Realistic two-body interactions of Argonne and Urbana type, together with three-body interactions have been used to calculate ground state energies and density distributions of the 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: Latex 10 pages, 3 Tables, 10 Figure

    Renormalized Fermi hypernetted chain approach in medium-heavy nuclei

    Full text link
    The application of the Correlated basis function theory and of the Fermi hypernetted chain technique, to the description of the ground state of medium-heavy nuclei is reviewed. We discuss how the formalism, originally developed for symmetric nuclear matter, should be changed in order to describe finite nuclear systems, with different number of protons and neutrons. This approach allows us to describe doubly closed shell nuclei by using microscopic nucleon-nucleon interactions. We presents results of numerical calculations done with two-nucleon interactions of Argonne type,implemented with three-body forces of Urbana type. Our results regard ground-state energies, matter, charge and momentum distributions, natural orbits, occupation numbers, quasi-hole wave functions and spectroscopic factors of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei.Comment: 127 Pages, 37 figures, Accepted for publication in Physics Report

    Low-lying magnetic excitations of doubly-closed-shell nuclei and nucleon-nucleon effective interactions

    Full text link
    We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell nuclei imposes severe constraints on the spin and tensor terms of the nucleon-nucleon effective interaction. We have first made an investigation by using four phenomenological effective interactions and we have obtained good agreement with the experimental magnetic spectra, and, to a lesser extent, with the electron scattering responses. Then we have made self-consistent RPA calculations to test the validity of the finite-range D1 Gogny interaction. For all the nuclei under study we have found that this interaction inverts the energies of all the magnetic states forming isospin doublets.Comment: 19 pages, 13 figures, 7 tables, accepted for publication in Phys. Rev.

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Get PDF
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table

    Evolution of the pygmy dipole resonance in nuclei with neutron excess

    Full text link
    The electric dipole excitation of various nuclei is calculated with a Random Phase Approximation phenomenological approach. The evolution of the strength distribution in various groups of isotopes, oxygen, calcium, zirconium and tin, is studied. The neutron excess produces E1E1 strength in the low energy region. Indexes to measure the collectivity of the excitation are defined. We studied the behavior of proton and neutron transition densities to determine the isoscalar or isovector nature of the excitation. We observed that in medium-heavy nuclei the low-energy E1E1 excitation has characteristics rather different that those exhibited by the giant dipole resonance. This new type of excitation can be identified as pygmy dipole resonance.Comment: 14 pages, 12 figures, 7 table

    Momentum distributions and spectroscopic factors of doubly-closed shell nuclei in correlated basis function theory

    Get PDF
    The momentum distributions, natural orbits, spectroscopic factors and quasi-hole wave functions of the C12, O16, Ca40, Ca48, and Pb208 doubly closed shell nuclei, have been calculated in the framework of the Correlated Basis Function theory, by using the Fermi hypernetted chain resummation techniques. The calculations have been done by using the realistic Argonne v8' nucleon-nucleon potential, together with the Urbana IX three-body interaction. Operator dependent correlations, which consider channels up to the tensor ones, have been used. We found noticeable effects produced by the correlations. For high momentum values, the momentum distributions show large enhancements with respect to the independent particle model results. Natural orbits occupation numbers are depleted by about the 10\% with respect to the independent particle model values. The effects of the correlations on the spectroscopic factors are larger on the more deeply bound states.Comment: Modified version of the previous paper (there are new figures). The paper has been accepted for publication in Physical Review

    Correlations and charge distributions of medium heavy nuclei

    Get PDF
    The effects of long- and short-range correlations on the charge distributions of some medium and heavy nuclei are investigated. The long-range correlations are treated within the Random Phase Approximation framework and the short-range correlations with a model inspired to the Correlation Basis Function theory. The two type of correlations produce effects of the same order of magnitude. A comparison with the empirical charge distribution difference between 206Pb and 205Tl shows the need of including both correlations to obtain a good description of the data.Comment: 20 pages, Latex, accepted for publication in Jour. Phys.

    Mean-field calculations of exotic nuclei ground states

    Full text link
    We study the predictions of three mean-field theoretical approaches in the description of the ground state properties of some spherical nuclei far from the stability line. We compare binding energies, single particle spectra, density distributions, charge and neutron radii obtained with non-relativistic Hartree-Fock calculations carried out with both zero and finite-range interactions, and with a relativistic Hartree approach which uses a finite-range interaction. The agreement between the results obtained with the three different approaches indicates that these results are more related to the basic hypotheses of the mean-field approach rather than to its implementation in actual calculations.Comment: 16 pages, 12 figures, 2 tables, accepted for publication in Physical Review
    corecore