The momentum distributions, natural orbits, spectroscopic factors and
quasi-hole
wave functions of the C12, O16, Ca40, Ca48, and Pb208 doubly closed shell
nuclei, have been calculated in the framework of the Correlated Basis Function
theory, by using the Fermi hypernetted chain resummation techniques. The
calculations have been done by using the realistic Argonne v8' nucleon-nucleon
potential, together with the Urbana IX three-body interaction. Operator
dependent correlations, which consider channels up to the tensor ones, have
been
used. We found noticeable effects produced by the correlations. For high
momentum values, the momentum distributions show large enhancements with
respect to the independent particle model results. Natural orbits occupation
numbers are depleted by about the 10\% with respect to the independent particle
model values. The effects of the correlations on the spectroscopic factors are
larger on the more deeply bound states.Comment: Modified version of the previous paper (there are new figures). The
paper has been accepted for publication in Physical Review