13 research outputs found

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Cryopreservation of whole seeds and excised embryonic axes of Citrus suhuiensis cv. limau langkat in accordance to their desiccation sensitivity

    No full text
    Following the investigation of desiccation sensitivity and freezing tolerance of the whole seed of Citrus suhuiensis cv. limau. langkat, desiccation sensitivity and cryopreservation of the excised embryonic axes from the seeds of the same species were examined. Three drying conditions were employed: desiccation by equilibrium for the whole seeds and desiccation in laminar airflow and over silica gel for the excised embryonic axes. The relevance of desiccation sensitivity (WC50) to cryopreservation of whole seeds and excised axes was investigated. High desiccation tolerance (WC50 = 0.034 g H2O center dot g(-1)dw) was acquired for axes desiccated with faster dehydration rate (1.5 g center dot g(-1)center dot h(-1)) in laminar airflow compared to substantially lower desiccation tolerance (WC50 = 0.132 and 0.110 g H2O center dot g(-1) dw) acquired under slower dehydration rates (1.0 and 0. 005 g center dot g(-1)center dot h(-1)) for axes desiccated over silica gel and whole seeds desiccated by equilibrium respectively. While few whole seeds (8.3%) survived freezing, high recovery percentages of axes (83.3% and 62.2%) after freezing were obtained under laminar airflow and silica gel drying conditions respectively. Irrespective of the drying method employed, axes survival percentages after exposure to LN temperature commensurate with the desiccation sensitivity pattern. For the whole seeds, a factor other than desiccation sensitivity that limits the tolerance to exposure to LN temperature seems to exist and still needs to be defined

    Progress toward a malaria vaccine: Efficient induction of protective anti-malaria immunity

    No full text
    Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria naive adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. the widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease.Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens, While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. the stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.NYU, Sch Med, Dept Med & Mol Parasitol, New York, NY 10010 USAUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilWeb of Scienc
    corecore