234 research outputs found

    How Emotion Strengthens the Recollective Experience: A Time-Dependent Hippocampal Process

    Get PDF
    Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage

    Visuomotor adaptive improvement and aftereffects are impaired differentially following cerebellar lesions in SCA and PICA territory

    Get PDF
    The aim of the present study was to elucidate the contribution of the superior and posterior inferior cerebellum to adaptive improvement and aftereffects in a visuomotor adaptation task. Nine patients with ischemic lesions within the territory of the posterior inferior cerebellar artery (PICA), six patients with ischemic lesions within the territory of the superior cerebellar artery (SCA) and 17 age-matched controls participated. All subjects performed center-out reaching movements under 60° rotation of visual feedback. For the assessment of aftereffects, we tested retention of adaptation and de-adaptation under 0° visual rotation. From this data we also quantified five measures of motor performance. Cerebellar lesion-symptom mapping was performed using magnetic resonance imaging subtraction analysis. Adaptive improvement during 60° rotation was significantly degraded in PICA patients and even more in SCA patients. Subtraction analysis revealed that posterior (Crus I) as well as anterior cerebellar regions (lobule V) showed a common overlap related to deficits in adaptive improvement. However, for aftereffect measures as well as for motor performance variables only SCA patients, but not PICA patients showed significant differences to control subjects. Subtraction analysis showed that affection of lobules V and VI were more common in patients with impaired retention and de-adaptation, respectively. Data shows that areas both within the superior and posterior inferior cerebellum are involved in adaptive improvement. However, only the superior cerebellum including lobules V and VI appears to be important for aftereffects and therefore true adaptive ability

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Kuhnian revolutions in neuroscience: the role of tool development.

    Get PDF
    The terms "paradigm" and "paradigm shift" originated in "The Structure of Scientific Revolutions" by Thomas Kuhn. A paradigm can be defined as the generally accepted concepts and practices of a field, and a paradigm shift its replacement in a scientific revolution. A paradigm shift results from a crisis caused by anomalies in a paradigm that reduce its usefulness to a field. Claims of paradigm shifts and revolutions are made frequently in the neurosciences. In this article I will consider neuroscience paradigms, and the claim that new tools and techniques rather than crises have driven paradigm shifts. I will argue that tool development has played a minor role in neuroscience revolutions.The work received no fundin

    The Pricing Behaviour of Firms in the Euro Area: New Survey Evidence

    Full text link

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer

    Full text link
    corecore