460 research outputs found

    Magnetic flux reversal in laminated Ni-Fe films

    Get PDF
    Anomalously fast flux reversal has been observed in films made of Ni-Fe layers separated by SiO. The speed of reversal increases as the number of identical layers of Ni-Fe increases. For a 5-layer film, the anomalous speed is observed in films with the SiO thickness as great as 1600 Å. Reversal time curves presented as a family of curves of 1/τ = fh_┴ with h_s as a parameter have two regions. The high-drive region has a lower slope in the laminated films when compared to the single-layer films. For this family of curves, a switching coefficient S_(w') can be defined, as the inverse slope, in a manner similar to the definition of S_w for 1/τ = f(h_(s)) with h_┴ as a parameter. For films with from two to five layers, Sw' is constant at 1 x 10^(-3) μs and is smaller by an order of magnitude for the single-layer films. A dual loop experiment is used to confirm that coherent rotation is not a dominant mechanism. It is concluded that a model must satisfy the following criteria to successfully describe flux reversal in the laminated films: It must provide rapid flux reversal for fields less than H_k, an insensitivity to transverse fields either constant or pulsed, and an interaction that can survive over a wide range of SiO thicknesses

    Molecular Beams

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U.S. Navy, and U.S. Air Force) under Contract DA 28-043-AMC-02536(E)Sloan Fund for Basic Research (M.I.T. Grant 367

    RADIX: a minimal-resources rapid-access drilling system

    Get PDF
    Determining the expected age at a potential ice-core drilling site on a polar ice sheet generally depends on a combination of information from remote-sensing methods, estimates of current accumulation and modelling. This poses irreducible uncertainties in retrieving an undisturbed ice core of the desired age. Although recently perfected radar techniques will improve the picture of the ice sheet below future drilling sites, rapid prospective drillings could further increase the success of deep drilling projects. Here we design and explore a drilling system for a minimum-size rapid-access hole. The advantages of a small hole are the low demand for drilling fluid, low overall weight of the equipment, fast installing and de-installing and low costs. We show that, in theory, drilling of a 20mm hole to a depth of 3000m is possible in ~4 days. First concepts have been realized and verified in the field. Both the drill cuttings and the hole itself can be used to characterize the properties of the ice sheet and its potential to provide a trustworthy palaeo-record. A candidate drilling site could be explored in ~2 weeks, which would enable the characterization of several sites in one summer season

    Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains”. In:

    Get PDF
    Abstract. The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acidneutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n ¼ 244 lakes), Grand Teton National Park (n ¼ 106 lakes), Great Sand Dunes National Park and Preserve (n ¼ 11 lakes), Rocky Mountain National Park (n ¼ 114 lakes), and Yellowstone National Park (n ¼ 294 lakes). Lakes that had a high probability of having an ANC concentration ,100 leq/L, and therefore sensitive to acidic deposition, are located in basins with elevations .3000 m, with ,30% of the catchment having northeast aspect and with .80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world

    Assessment of lake sensitivity to acidic deposition in national parks of the Rocky Mountains”. In:

    Get PDF
    Abstract. The sensitivity of high-elevation lakes to acidic deposition was evaluated in five national parks of the Rocky Mountains based on statistical relations between lake acidneutralizing capacity concentrations and basin characteristics. Acid-neutralizing capacity (ANC) of 151 lakes sampled during synoptic surveys and basin-characteristic information derived from geographic information system (GIS) data sets were used to calibrate the statistical models. The explanatory basin variables that were considered included topographic parameters, bedrock type, and vegetation type. A logistic regression model was developed, and modeling results were cross-validated through lake sampling during fall 2004 at 58 lakes. The model was applied to lake basins greater than 1 ha in area in Glacier National Park (n ¼ 244 lakes), Grand Teton National Park (n ¼ 106 lakes), Great Sand Dunes National Park and Preserve (n ¼ 11 lakes), Rocky Mountain National Park (n ¼ 114 lakes), and Yellowstone National Park (n ¼ 294 lakes). Lakes that had a high probability of having an ANC concentration ,100 leq/L, and therefore sensitive to acidic deposition, are located in basins with elevations .3000 m, with ,30% of the catchment having northeast aspect and with .80% of the catchment bedrock having low buffering capacity. The modeling results indicate that the most sensitive lakes are located in Rocky Mountain National Park and Grand Teton National Park. This technique for evaluating the lake sensitivity to acidic deposition is useful for designing long-term monitoring plans and is potentially transferable to other remote mountain areas of the United States and the world

    Criticality and Superfluidity in liquid He-4 under Nonequilibrium Conditions

    Full text link
    We review a striking array of recent experiments, and their theoretical interpretations, on the superfluid transition in 4^4He in the presence of a heat flux, QQ. We define and evaluate a new set of critical point exponents. The statics and dynamics of the superfluid-normal interface are discussed, with special attention to the role of gravity. If QQ is in the same direction as gravity, a self-organized state can arise, in which the entire sample has a uniform reduced temperature, on either the normal or superfluid side of the transition. Finally, we review recent theory and experiment regarding the heat capacity at constant QQ. The excitement that surrounds this field arises from the fact that advanced thermometry and the future availability of a microgravity experimental platform aboard the International Space Station will soon open to experimental exploration decades of reduced temperature that were previously inaccessible.Comment: 16 pages, 9 figures, plus harvard.sty style file for references Accepted for publication in Colloquia section of Reviews of Modern Physic

    Population statistics study of radio and gamma-ray pulsars in the Galactic plane

    Full text link
    We present results of our pulsar population synthesis of ordinary isolated and millisecond pulsars in the Galactic plane. Over the past several years, a program has been developed to simulate pulsar birth, evolution and emission using Monte Carlo techniques. We have added to the program the capability to simulate millisecond pulsars, which are old, recycled pulsars with extremely short periods. We model the spatial distribution of the simulated pulsars by assuming that they start with a random kick velocity and then evolve through the Galactic potential. We use a polar cap/slot gap model for γ\gamma-ray emission from both millisecond and ordinary pulsars. From our studies of radio pulsars that have clearly identifiable core and cone components, in which we fit the polarization sweep as well as the pulse profiles in order to constrain the viewing geometry, we develop a model describing the ratio of radio core-to-cone peak fluxes. In this model, short period pulsars are more cone-dominated than in our previous studies. We present the preliminary results of our recent study and the implications for observing these pulsars with GLAST and AGILE.Comment: 6 pages, 3 figures, 1 table, accepted in Astrophysics and Space Scienc
    corecore