69 research outputs found

    Le discours sur la ville dans les films d'anticipation

    Get PDF
    Québec Université Laval, Bibliothèque 201

    Barriers, trategies, and best practices for BIM Adoption in Quebec prefabrication small and medium-sized enterprises (SMEs)

    Get PDF
    Prefabricated construction has long faced problems due to the industry’s fragmentation. Building Information Modeling (BIM) has thus appeared as an efficient solution to provide a favorable environment for efficient completion of projects. Despite its benefits, implementing BIM successfully in small and medium-sized enterprises (SMEs), which represent the vast majority of manufacturers in Quebec, requires deep risk analysis and rigorous strategies. Hence, this work aims to study BIM implementation barriers, strategies, and best practices in wood prefabrication for SMEs through a literature review, semi-structured interviews, and an online survey. After qualitative content analysis, 30 critical barriers, 7 strategic milestones, and 31 best practices to maximize BIM benefits were revealed. One of the critical barriers concerns the effort required to develop BIM software libraries and programs to translate information from the BIM model to production equipment. Among the best strategies, it is essential to start by analyzing the current business model of the SMEs and to appoint a small BIM committee whose main responsibilities are management, coordination, and modeling. The prevalent best practices were to support the implementation team and encourage communication and collaboration. Previous studies show that BIM is not fully exploited in prefabrication for various reasons. This study highlights the critical barriers, strategies, and best practices for BIM adoption and proposes a framework for BIM implementation in prefabrication SMEs in Quebec, Canada. It also provides a summary of current knowledge and guidelines to promote BIM adoption in this sector

    Portrait of blood-derived extracellular vesicles in patients with Parkinson's disease.

    Get PDF
    The production of extracellular vesicles (EV) is a ubiquitous feature of eukaryotic cells but pathological events can affect their formation and constituents. We sought to characterize the nature, profile and protein signature of EV in the plasma of Parkinson's disease (PD) patients and how they correlate to clinical measures of the disease. EV were initially collected from cohorts of PD (n = 60; Controls, n = 37) and Huntington's disease (HD) patients (Pre-manifest, n = 11; manifest, n = 52; Controls, n = 55) - for comparative purposes in individuals with another chronic neurodegenerative condition - and exhaustively analyzed using flow cytometry, electron microscopy and proteomics. We then collected 42 samples from an additional independent cohort of PD patients to confirm our initial results. Through a series of iterative steps, we optimized an approach for defining the EV signature in PD. We found that the number of EV derived specifically from erythrocytes segregated with UPDRS scores corresponding to different disease stages. Proteomic analysis further revealed that there is a specific signature of proteins that could reliably differentiate control subjects from mild and moderate PD patients. Taken together, we have developed/identified an EV blood-based assay that has the potential to be used as a biomarker for PD

    Transmission Spectroscopy of the Habitable Zone Exoplanet LHS 1140 b with JWST/NIRISS

    Get PDF
    LHS 1140 b is the second-closest temperate transiting planet to Earth with an equilibrium temperature low enough to support surface liquid water. At 1.730 ± 0.025 R ⊕, LHS 1140 b falls within the radius valley separating H2-rich mini-Neptunes from rocky super-Earths. Recent mass and radius revisions indicate a bulk density significantly lower than expected for an Earth-like rocky interior, suggesting that LHS 1140 b could be either a mini-Neptune with a small envelope of hydrogen (∼0.1% by mass) or a water world (9%–19% water by mass). Atmospheric characterization through transmission spectroscopy can readily discern between these two scenarios. Here we present two JWST/NIRISS transit observations of LHS 1140 b, one of which captures a serendipitous transit of LHS 1140 c. The combined transmission spectrum of LHS 1140 b shows a telltale spectral signature of unocculted faculae (5.8σ), covering ∼20% of the visible stellar surface. Besides faculae, our spectral retrieval analysis reveals tentative evidence of residual spectral features, best fit by Rayleigh scattering from a N2-dominated atmosphere (2.3σ), irrespective of the consideration of atmospheric hazes. We also show through Global Climate Models (GCMs) that H2-rich atmospheres of various compositions (100×, 300×, 1000× solar metallicity) are ruled out to >10σ. The GCM calculations predict that water clouds form below the transit photosphere, limiting their impact on transmission data. Our observations suggest that LHS 1140 b is either airless or, more likely, surrounded by an atmosphere with a high mean molecular weight. Our tentative evidence of a N2-rich atmosphere provides strong motivation for future transmission spectroscopy observations of LHS 1140 b

    Asymptomatic carriers of COVID-19 in a confined adult community population in Quebec: a cross-sectional study

    Get PDF
    Several countries have undertaken social distancing measures to stop SARS-CoV-2 spread. Asymptomatic carriers’ prevalence is unknown and would provide essential information on hidden viral circulation. In our cross-sectional study, 1.82% of 330 asymptomatic confined individuals living in the community carried SARS-CoV-2 despite no contact with declared cases, raising concerns about unnoticed transmission

    The First Habitable Zone Earth-Sized Planet From TESS II: Spitzer Confirms TOI-700 d

    Get PDF
    We present Spitzer 4.5 μm observations of the transit of TOI-700 d, a habitable-zone Earth-sized planet in a multiplanet system transiting a nearby M-dwarf star (TIC 150428135, 2MASS J06282325–6534456). TOI-700 d has a radius of 1.144^(+0.062)_(-0.061) R⊕ and orbits within its host star's conservative habitable zone with a period of 37.42 days (T_(eq) ~ 269 K). TOI-700 also hosts two small inner planets (R_b = 1.037^(+0.0065)_(-0.064) R⊕ and R_c = 2.65^(+0.16)_(-0.15) R⊕) with periods of 9.98 and 16.05 days, respectively. Our Spitzer observations confirm the Transiting Exoplanet Survey Satellite (TESS) detection of TOI-700 d and remove any remaining doubt that it is a genuine planet. We analyze the Spitzer light curve combined with the 11 sectors of TESS observations and a transit of TOI-700 c from the LCOGT network to determine the full system parameters. Although studying the atmosphere of TOI-700 d is not likely feasible with upcoming facilities, it may be possible to measure the mass of TOI-700 d using state-of-the-art radial velocity (RV) instruments (expected RV semiamplitude of ~70 cm s⁻¹)

    A roadmap to the efficient and robust characterization of temperate terrestrial planet atmospheres with JWST

    Full text link
    Ultra-cool dwarf stars are abundant, long-lived, and uniquely suited to enable the atmospheric study of transiting terrestrial companions with JWST. Amongst them, the most prominent is the M8.5V star TRAPPIST-1 and its seven planets, which have been the favored targets of eight JWST Cycle 1 programs. While Cycle 1 observations have started to yield preliminary insights into the planets, they have also revealed that their atmospheric exploration requires a better understanding of their host star. Here, we propose a roadmap to characterize the TRAPPIST-1 system -- and others like it -- in an efficient and robust manner. We notably recommend that -- although more challenging to schedule -- multi-transit windows be prioritized to constrain stellar heterogeneities and gather up to 2×\times more transits per JWST hour spent. We conclude that in such systems planets cannot be studied in isolation by small programs, thus large-scale community-supported programs should be supported to enable the efficient and robust exploration of terrestrial exoplanets in the JWST era

    Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST

    Get PDF
    Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe
    corecore