423 research outputs found
Dislocation Core Energies and Core Fields from First Principles
Ab initio calculations in bcc iron show that a screw dislocation
induces a short-range dilatation field in addition to the Volterra elastic
field. This core field is modeled in anisotropic elastic theory using force
dipoles. The elastic modeling thus better reproduces the atom displacements
observed in ab initio calculations. Including this core field in the
computation of the elastic energy allows deriving a core energy which converges
faster with the cell size, thus leading to a result which does not depend on
the geometry of the dislocation array used for the simulation.Comment: DOI: 10.1103/PhysRevLett.102.05550
Predicting dislocation climb: Classical modeling versus atomistic simulations
The classical modeling of dislocation climb based on a continuous description
of vacancy diffusion is compared to recent atomistic simulations of dislocation
climb in body-centered cubic iron under vacancy supersaturation [Phys. Rev.
Lett. 105 095501 (2010)]. A quantitative agreement is obtained, showing the
ability of the classical approach to describe dislocation climb. The analytical
model is then used to extrapolate dislocation climb velocities to lower
dislocation densities, in the range corresponding to experiments. This allows
testing of the validity of the pure climb creep model proposed by Kabir et al.
[Phys. Rev. Lett. 105 095501 (2010)]
The K-loop, a general feature of the Pyrococcus C/D guide RNAs, is an RNA structural motif related to the K-turn
The C/D guide RNAs predicted from the genomic sequences of three species of Pyrococcus delineate a family of small non-coding archaeal RNAs involved in the methylation of rRNA and tRNA. The C/D guides assemble into ribonucleoprotein (RNP) that contains the methyltransferase. The protein L7Ae, a key structural component of the RNP, binds to a Kink-turn (K-turn) formed by the C/D motif. The K-turn is a structure that consists of two RNA stems separated by a short asymmetric loop with a characteristic sharp bend (kink) between the two stems. The majority of the pyrococcal C/D guides contain a short 3 nt-spacer between the C′/D′ motifs. We show here that conserved terminal stem–loops formed by the C′/D′ motif of the Pyrococcus C/D RNAs are also L7Ae-binding sites. These stem–loops are related to the K-turn by sequence and structure, but they consist of a single stem closed by a terminal loop. We have named this structure the K-loop. We show that conserved non-canonical base pairs in the stem of the K-loop are necessary for L7Ae binding. For the C/D guides with a 3 nt-spacer we show that the sequence and length is also important. The K-loop could improve the stability of the C/D guide RNAs in Pyrococcal species, which are extreme hyperthermophiles
Dislocation core field. I. Modeling in anisotropic linear elasticity theory
Aside from the Volterra field, dislocations create a core field, which can be
modeled in linear anisotropic elasticity theory with force and dislocation
dipoles. We derive an expression of the elastic energy of a dislocation taking
full account of its core field and show that no cross term exists between the
Volterra and the core fields. We also obtain the contribution of the core field
to the dislocation interaction energy with an external stress, thus showing
that dislocation can interact with a pressure. The additional force that
derives from this core field contribution is proportional to the gradient of
the applied stress. Such a supplementary force on dislocations may be important
in high stress gradient regions, such as close to a crack tip or in a
dislocation pile-up
Dislocation core field. II. Screw dislocation in iron
The dislocation core field, which comes in addition to the Volterra elastic
field, is studied for the screw dislocation in alpha-iron. This core
field, evidenced and characterized using ab initio calculations, corresponds to
a biaxial dilatation, which we modeled within the anisotropic linear
elasticity. We show that this core field needs to be considered when extracting
quantitative information from atomistic simulations, such as dislocation core
energies. Finally, we look at how dislocation properties are modified by this
core field, by studying the interaction between two dislocations composing a
dipole, as well as the interaction of a screw dislocation with a carbon atom
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Organização do espaço regional e da agricultura familiar.
A diversidade geográfica; As características básicas das grandes regiões do Nordeste; Um instrumento de integração: o Zoneamento agroecológico; Atores e sistema de produção; Uma representação da diversidade geográfica e social; Um modelo teórico explicativo; Os espaços da agricultura familiar; A localização da agricultura familiar, o modo de produção e as características do mercado; Orientações para a ação.bitstream/item/196558/1/Camponeses-do-Sertao-pag-47-63.pd
- …