102 research outputs found

    The initiator methionine tRNA drives secretion of type II collagen from stromal fibroblasts to promote tumor growth and angiogenesis

    Get PDF
    Summary: Expression of the initiator methionine tRNA (tRNAi Met) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi Met expression levels influence tumor progression. We have found that tRNAi Met expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi Met in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi Met contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi Met gene (2+tRNAi Met mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi Met mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi Met mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi Met significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi Metoverexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl- 3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi Met-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi Met mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi Met levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis

    Mitochondrial permeabilization engages NF-kappa B-dependent anti-tumour activity under caspase deficiency

    Get PDF
    Apoptosis represents a key anti-cancer therapeutic effector mechanism. During apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically kills cells even in the absence of caspase activity. Caspase activity can also have a variety of unwanted consequences that include DNA damage. We therefore investigated whether MOMP-induced caspase-independent cell death (CICD) might be a better way to kill cancer cells. We find that cells undergoing CICD display potent pro-inflammatory effects relative to apoptosis. Underlying this, MOMP was found to stimulate NF-ÎșB activity through the downregulation of inhibitor of apoptosis proteins. Strikingly, engagement of CICD displays potent anti-tumorigenic effects, often promoting complete tumour regression in a manner dependent on intact immunity. Our data demonstrate that by activating NF-ÎșB, MOMP can exert additional signalling functions besides triggering cell death. Moreover, they support a rationale for engaging caspase-independent cell death in cell-killing anti-cancer therapies

    Secreted CLIC3 drives cancer progression through its glutathione-dependent oxidoreductase activity

    Get PDF
    © The Author(s) 2017. The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion

    Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes

    Get PDF
    In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor ÎČ-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain

    The Progeny of Arabidopsis thaliana Plants Exposed to Salt Exhibit Changes in DNA Methylation, Histone Modifications and Gene Expression

    Get PDF
    Plants are able to acclimate to new growth conditions on a relatively short time-scale. Recently, we showed that the progeny of plants exposed to various abiotic stresses exhibited changes in genome stability, methylation patterns and stress tolerance. Here, we performed a more detailed analysis of methylation patterns in the progeny of Arabidopsis thaliana (Arabidopsis) plants exposed to 25 and 75 mM sodium chloride. We found that the majority of gene promoters exhibiting changes in methylation were hypermethylated, and this group was overrepresented by regulators of the chromatin structure. The analysis of DNA methylation at gene bodies showed that hypermethylation in the progeny of stressed plants was primarily due to changes in the 5â€Č and 3â€Č ends as well as in exons rather than introns. All but one hypermethylated gene tested had lower gene expression. The analysis of histone modifications in the promoters and coding sequences showed that hypermethylation and lower gene expression correlated with the enrichment of H3K9me2 and depletion of H3K9ac histones. Thus, our work demonstrated a high degree of correlation between changes in DNA methylation, histone modifications and gene expression in the progeny of salt-stressed plants

    30-day morbidity and mortality of sleeve gastrectomy, Roux-en-Y gastric bypass and one anastomosis gastric bypass: a propensity score-matched analysis of the GENEVA data

    Get PDF
    Background: There is a paucity of data comparing 30-day morbidity and mortality of sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). This study aimed to compare the 30-day safety of SG, RYGB, and OAGB in propensity score-matched cohorts. Materials and methods: This analysis utilised data collected from the GENEVA study which was a multicentre observational cohort study of bariatric and metabolic surgery (BMS) in 185 centres across 42 countries between 01/05/2022 and 31/10/2020 during the Coronavirus Disease-2019 (COVID-19) pandemic. 30-day complications were categorised according to the Clavien–Dindo classification. Patients receiving SG, RYGB, or OAGB were propensity-matched according to baseline characteristics and 30-day complications were compared between groups. Results: In total, 6770 patients (SG 3983; OAGB 702; RYGB 2085) were included in this analysis. Prior to matching, RYGB was associated with highest 30-day complication rate (SG 5.8%; OAGB 7.5%; RYGB 8.0% (p = 0.006)). On multivariate regression modelling, Insulin-dependent type 2 diabetes mellitus and hypercholesterolaemia were associated with increased 30-day complications. Being a non-smoker was associated with reduced complication rates. When compared to SG as a reference category, RYGB, but not OAGB, was associated with an increased rate of 30-day complications. A total of 702 pairs of SG and OAGB were propensity score-matched. The complication rate in the SG group was 7.3% (n = 51) as compared to 7.5% (n = 53) in the OAGB group (p = 0.68). Similarly, 2085 pairs of SG and RYGB were propensity score-matched. The complication rate in the SG group was 6.1% (n = 127) as compared to 7.9% (n = 166) in the RYGB group (p = 0.09). And, 702 pairs of OAGB and RYGB were matched. The complication rate in both groups was the same at 7.5 % (n = 53; p = 0.07). Conclusions: This global study found no significant difference in the 30-day morbidity and mortality of SG, RYGB, and OAGB in propensity score-matched cohorts

    30-Day morbidity and mortality of bariatric metabolic surgery in adolescence during the COVID-19 pandemic – The GENEVA study

    Get PDF
    Background: Metabolic and bariatric surgery (MBS) is an effective treatment for adolescents with severe obesity. Objectives: This study examined the safety of MBS in adolescents during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This was a global, multicentre and observational cohort study of MBS performed between May 01, 2020, and October 10,2020, in 68 centres from 24 countries. Data collection included in-hospital and 30-day COVID-19 and surgery-specific morbidity/mortality. Results: One hundred and seventy adolescent patients (mean age: 17.75 ± 1.30 years), mostly females (n = 122, 71.8%), underwent MBS during the study period. The mean pre-operative weight and body mass index were 122.16 ± 15.92 kg and 43.7 ± 7.11 kg/m2, respectively. Although majority of patients had pre-operative testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (n = 146; 85.9%), only 42.4% (n = 72) of the patients were asked to self-isolate pre-operatively. Two patients developed symptomatic SARS-CoV-2 infection post-operatively (1.2%). The overall complication rate was 5.3% (n = 9). There was no mortality in this cohort. Conclusions: MBS in adolescents with obesity is safe during the COVID-19 pandemic when performed within the context of local precautionary procedures (such as pre-operative testing). The 30-day morbidity rates were similar to those reported pre-pandemic. These data will help facilitate the safe re-introduction of MBS services for this group of patients
    • 

    corecore