16 research outputs found

    Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    Get PDF
    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measurements and 35 litter productivity measurements), their associated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonality in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rainfall is < 2000ĝ€-mmĝ€-yrĝ'1 (water-limited forests) and to radiation otherwise (light-limited forests). On the other hand, independent of climate limitations, wood productivity and litterfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosynthetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest productivity in a drier climate in water-limited forest, and in current light-limited forest with future rainfall < 2000ĝ€-mmĝ€-yrĝ'1. Author(s) 2016.Fil: Wagner, Fabien H.. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Hérault, Bruno. Ecologie Des Forets de Guyane; BrasilFil: Bonal, Damien. Institut National de la Recherche Agronomique; FranciaFil: Stahl, Clment. Universiteit Antwerp; BélgicaFil: Anderson, Liana O.. National Center For Monitoring And Early Warning Of Natural Disasters; BrasilFil: Baker, Timothy R.. University Of Leeds; Reino UnidoFil: Sebastian Becker, Gabriel. Universidad de Hohenheim; AlemaniaFil: Beeckman, Hans. Royal Museum For Central Africa; BélgicaFil: Boanerges Souza, Danilo. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Cesar Botosso, Paulo. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Bowman, David M. J. S.. University of Tasmania; AustraliaFil: Bräuning, Achim. Universitat Erlangen-Nuremberg; AlemaniaFil: Brede, Benjamin. Wageningen University And Research Centre; Países BajosFil: Irving Brown, Foster. Universidade Federal Do Acre; BrasilFil: Julio Camarero, Jesus. Instituto Boliviano de Investigacion Forestal Bolivia; BoliviaFil: Camargo, Plnio Barbosa. Universidade de Sao Paulo; BrasilFil: Cardoso, Fernanda C.G.. Universidade Federal do Paraná; BrasilFil: Carvalho, Fabrcio Alvim. Universidade Federal de Juiz de Fora; BrasilFil: Castro, Wendeson. Universidade Federal Do Acre; BrasilFil: Koloski Chagas, Rubens. Universidade de Sao Paulo; BrasilFil: Chave, Jrome. Centre National de la Recherche Scientifique; FranciaFil: Chidumayo, Emmanuel N.. University Of Zambia; ZambiaFil: Clark, Deborah A.. University Of Missouri-st. Louis; Estados UnidosFil: Regina Capellotto Costa, Flavia. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Couralet, Camille. Royal Museum For Central Africa; BélgicaFil: Henrique Da Silva Mauricio, Paulo. Universidade Federal Do Acre; BrasilFil: Dalitz, Helmut. Universidad de Hohenheim; AlemaniaFil: Resende De Castro, Vinicius. Universidade Federal de Vicosa; BrasilFil: Milani, Jaanan Eloisa De Freitas. Universidade Federal do Paraná; BrasilFil: Roig Junent, Fidel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Museo de Historia Natural de San Rafael - Ianigla | Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Museo de Historia Natural de San Rafael - Ianigla | Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Museo de Historia Natural de San Rafael - Ianigla; Argentin

    FTIR–PAS: A powerful tool for characterising the chemical composition and predicting the labile C fraction of various organic waste products

    No full text
    Fourier transform infrared (FT-IR) spectroscopy has been used for several years as a fast, low-cost, reliable technique for characterising a large variety of materials. However, the strong influence of sample particlesize and the inability to measure the absorption of very dark and opaque samples have made FTIR unsuitablefor many waste materials. FTIR–photoacoustic spectroscopy (FTIR–PAS) can eliminate some of theshortcomings of traditional FTIR caused by scattering effects and reflection issues, and recent advancesin PAS technology have made commercial instruments available. In this study, FTIR–PAS was used tocharacterise a wide range of organic waste products and predict their labile carbon fraction, which is normallydetermined from time-consuming assays. FTIR–PAS was found to be capable of predicting the labilefraction of carbon as efficiently as near infrared spectroscopy (NIR) and furthermore of identifying thecompounds that are correlated with the predicted parameter, thus facilitating a more mechanisticinterpretatio
    corecore