47 research outputs found

    Heterojunction Hybrid Devices from Vapor Phase Grown MoS2_{2}

    Full text link
    We investigate a vertically-stacked hybrid photodiode consisting of a thin n-type molybdenum disulfide (MoS2_{2}) layer transferred onto p-type silicon. The fabrication is scalable as the MoS2_{2} is grown by a controlled and tunable vapor phase sulfurization process. The obtained large-scale p-n heterojunction diodes exhibit notable photoconductivity which can be tuned by modifying the thickness of the MoS2_{2} layer. The diodes have a broad spectral response due to direct and indirect band transitions of the nanoscale MoS2_{2}. Further, we observe a blue-shift of the spectral response into the visible range. The results are a significant step towards scalable fabrication of vertical devices from two-dimensional materials and constitute a new paradigm for materials engineering.Comment: 23 pages with 4 figures. This article has been published in Scientific Reports. (26 June 2014, doi:10.1038/srep05458

    Charge carriers in dynamic ferroelectric domain walls

    Get PDF
    Ferroelectric domain walls (DWs) are the subject of intense research at present in the search for high dielectric, gigahertz responsive materials with novel functionalities[1]. Crucial to the integration of DWs into nanoelectronics is a proper understanding of the local electronic landscape around the wall and the influence this has on the behaviour of the DW under variable electric fields. A high degree of mobility under small electric fields is especially desirable for low power applications which escape from the critical current thresholds required to move magnetic domain walls[2]. Perovskite oxides are prime candidates for tuning the thermodynamic variables affecting the energy landscape of DWs and thus controlling their orientation/charge state[3]. Here we present an investigation into the behaviour of ferroelectric DWs under dynamic fields and the specific charge carriers present at DWs

    Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material

    Get PDF
    The five-layer Aurivillius phase Bi6TixFeyMnzO18 system is a rare example of a single-phase room temperature multiferroic material. To optimise its properties and exploit it for future memory storage applications, it is necessary to understand the origin of the room temperature magnetisation. In this work we use high resolution scanning transmission electron microscopy, EDX and EELS to discover how closely-packed Ti/Mn/Fe cations of similar atomic number are arranged, both within the perfect structure and within defect regions. Direct evidence for partitioning of the magnetic cations (Mn and Fe) to the central three of the five perovskite (PK) layers is presented, which reveals a marked preference for Mn to partition to the central layer. We infer this is most probably due to elastic strain energy considerations. The observed increase (>8%) in magnetic cation content at the central PK layers engenders up to a 90% increase in potential ferromagnetic spin alignments in the central layer and this could be significant in terms of creating pathways to the long-range room temperature magnetic order observed in this distinct and intriguing material system
    corecore