22 research outputs found

    Quantization of the Jackiw-Teitelboim model

    Full text link
    We study the phase space structure of the Jackiw-Teitelboim model in its connection variables formulation where the gauge group of the field theory is given by local SL(2,R) (or SU(2) for the Euclidean model), i.e. the de Sitter group in two dimensions. In order to make the connection with two dimensional gravity explicit, a partial gauge fixing of the de Sitter symmetry can be introduced that reduces it to spacetime diffeomorphisms. This can be done in different ways. Having no local physical degrees of freedom, the reduced phase space of the model is finite dimensional. The simplicity of this gauge field theory allows for studying different avenues for quantization, which may use various (partial) gauge fixings. We show that reduction and quantization are noncommuting operations: the representation of basic variables as operators in a Hilbert space depend on the order chosen for the latter. Moreover, a representation that is natural in one case may not even be available in the other leading to inequivalent quantum theories.Comment: Published version, a short note (not present in the published version) on the quantization of the null sector has been adde

    Observables in Topological Yang-Mills Theories With Extended Shift Supersymmetry

    Full text link
    We present a complete classification, at the classical level, of the observables of topological Yang-Mills theories with an extended shift supersymmetry of N generators, in any space-time dimension. The observables are defined as the Yang-Mills BRST cohomology classes of shift supersymmetry invariants. These cohomology classes turn out to be solutions of an N-extension of Witten's equivariant cohomology. This work generalizes results known in the case of shift supersymmetry with a single generator.Comment: 27 pages, Late

    Superspace Gauge Fixing of Topological Yang-Mills Theories

    Full text link
    We revisit the construction of topological Yang-Mills theories of the Witten type with arbitrary space-time dimension and number of ``shift supersymmetry'' generators, using a superspace formalism. The super-BF structure of these theories is exploited in orderto determine their actions uniquely, up to the ambiguities due to the fixing of the Yang-Mills and BF gauge invariance. UV finiteness to all orders of perturbation theory is proved in a gauge of the Landau type.Comment: 26 pages, no figures, Late

    Loop Quantization of the Supersymmetric Two-Dimensional BF Model

    Full text link
    In this paper we consider the quantization of the 2d BF model coupled to topological matter. Guided by the rigid supersymmetry this system can be viewed as a super-BF model, where the field content is expressed in terms of superfields. A canonical analysis is done and the constraints are then implemented at the quantum level in order to construct the Hilbert space of the theory under the perspective of Loop Quantum Gravity methods.Comment: 17 pages, Late

    Observables in Topological Yang-Mills Theories

    Full text link
    Using topological Yang-Mills theory as example, we discuss the definition and determination of observables in topological field theories (of Witten-type) within the superspace formulation proposed by Horne. This approach to the equivariant cohomology leads to a set of bi-descent equations involving the BRST and supersymmetry operators as well as the exterior derivative. This allows us to determine superspace expressions for all observables, and thereby to recover the Donaldson-Witten polynomials when choosing a Wess-Zumino-type gauge.Comment: 39 pages, Late

    Canonical Analysis of the Jackiw-Teitelboim Model in the Temporal Gauge. I. The Classical Theory

    Full text link
    As a preparation for its quantization in the loop formalism, the 2-dimensional gravitation model of Jackiw and Teitelboim is analysed in the classical canonical formalism. The dynamics is of pure constraints as it is well-known. A partial gauge fixing of the temporal type being performed, the resulting second class constraints are sorted out and the corresponding Dirac bracket algebra is worked out. Dirac observables of this classical theory are then calculated.Comment: 15 pages, Latex. Misprint correction

    Observables in Topological Theories: A Superspace Formulation

    Full text link
    Observables of topological Yang-Mills theory were defined by Witten as the classes of an equivariant cohomology. We propose to define them alternatively as the BRST cohomology classes of a superspace version of the theory, where BRST invariance is associated to super Yang-Mills invariance. We provide and discuss the general solution of this cohomology.Comment: Prepared for International Conference on Renormalization Group and Anomalies in Gravity and Cosmology (IRGA 2003), Ouro Preto, MG, Brazil, 17-23 Mar 200
    corecore