47 research outputs found

    Grouped-Coordinate Ascent Algorithms for Penalized-Likelihood Transmission Image Reconstruction

    Full text link
    Presents a new class of algorithms for penalized-likelihood reconstruction of attenuation maps from low-count transmission scans. We derive the algorithms by applying to the transmission log-likelihood a version of the convexity technique developed by De Pierro for emission tomography. The new class includes the single-coordinate ascent (SCA) algorithm and Lange's convex algorithm for transmission tomography as special cases. The new grouped-coordinate ascent (GCA) algorithms in the class overcome several limitations associated with previous algorithms. (1) Fewer exponentiations are required than in the transmission maximum likelihood-expectation maximization (ML-EM) algorithm or in the SCA algorithm. (2) The algorithms intrinsically accommodate nonnegativity constraints, unlike many gradient-based methods. (3) The algorithms are easily parallelizable, unlike the SCA algorithm and perhaps line-search algorithms. We show that the GCA algorithms converge faster than the SCA algorithm, even on conventional workstations. An example from a low-count positron emission tomography (PET) transmission scan illustrates the method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86021/1/Fessler93.pd

    Feasibility Study of Compton Scattering Enchanced Multiple Pinhole Imager for Nuclear Medicine

    Full text link
    This paper presents a feasibility study of a Compton scattering enhanced (CSE) multiple pinhole imaging system for gamma rays with energy of 140 keV or higher. This system consists of a multiple-pinhole collimator, a position sensitive scintillation detector as used in a standard gamma camera, and a Si pad detector array, inserted between the collimator and the scintillation detector. The problem of multiplexing, normally associated with multiple pinhole system, is reduced by using the extra information from the detected Compton scattering events. In order to compensate for the sensitivity loss, due to the low probability of detecting Compton scattered events, the proposed detector is designed to collect both Compton scattering and non-Compton events. It has been shown that with properly selected pinhole spacing, the proposed detector design leads to an improved image quality.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86012/1/Fessler64.pd

    Improved Modeling of System Response in List Mode EM Reconstruction of Compton Scatter Camera Images

    Full text link
    An improved List Mode EM method for reconstructing Compton scattering camera images has been developed. First, an approximate method for computation of the spatial variation in the detector sensitivity has been derived and validated by Monte Carlo computation. A technique for estimating the relative weight of system matrix coefficients for each gamma in the list has also been employed, as has a method for determining the relative probabilities of emission having come from pixels tallied in each list-mode back-projection. Finally, a technique has been developed for modeling the effects of Doppler broadening and finite detector energy resolution on the relative weights for pixels neighbor to those intersected by the back-projection, based on values for the FWHM of the spread in the cone angle computed by Monte Carlo. Memory issues typically associated with list mode reconstruction are circumvented by storing only a list of the pixels intersected by the back-projections, and computing the weights of the neighboring pixels at each iteration step. Reconstructions have been performed on experimental data for both point and distributed sourcesPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86026/1/Fessler77.pd

    Preliminary Studies on the Feasibility of Addition of Vertex View to Conventional Brain SPECT

    Full text link
    We have investigated the improvement in resolution and sensitivity for brain imaging which would result by the addition of a single stationary vertex view to the tomographic data. This method has the practical advantage of being relatively inexpensive and easy to implement. The uniform Cramer Rao bound is a plot of the minimum achievable standard deviation for estimating the pixel intensity as a function of the bias gradient length. Uniform CR bound analysis indicated an improvement in performance when the vertex detector is added, especially for centrally located pixels for which improvement is seen over the useful depth for brain imaging. Simulation experiments were done with a simple six slice phantom and with the Hoffman brain phantom. Visual inspection of the reconstructed images showed improved resolution and noise characteristics over reconstructed images without the vertex data. Quantitatively, substantial reduction in mean square error was observed for a plane close to the vertex detector. Improvement reduced as distance from the vertex detector is increased. Background activities inside the field of view of the vertex detector but not the tomograph were represented by several blobs of activity on a plane lying outside the reconstruction volume. This activity was estimated by 3D spline fitting jointly with the image reconstruction process. Adding the vertex view to conventional brain SPECT should lead to improved cortical imaging, and to moderate improvement for deep structures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85857/1/Fessler142.pd

    Experimental evaluation of the resolution improvement provided by a silicon PET probe

    Get PDF
    A high-resolution PET system, which incorporates a silicon detector probe into a conventional PET scanner, has been proposed to obtain increased image quality in a limited region of interest. Detailed simulation studies have previously shown that the additional probe information improves the spatial resolution of the reconstructed image and increases lesion detectability, with no cost to other image quality measures. The current study expands on the previous work by using a laboratory prototype of the silicon PET-probe system to examine the resolution improvement in an experimental setting. Two different versions of the probe prototype were assessed, both consisting of a back-to-back pair of 1-mm thick silicon pad detectors, one arranged in 32 x 16 arrays of 1.4mm x 1.4mm pixels and the other in 40 x 26 arrays of 1.0mm x 1.0mm pixels. Each detector was read out by a set of VATAGP7 ASICs and a custom-designed data acquisition board which allowed trigger and data interfacing with the PET scanner, itself consisting of BGO block detectors segmented into 8 x 6 arrays of 6mm x 12mm x 30mm crystals. Limited-angle probe data was acquired from a group of Na-22 point-like sources in order to observe the maximum resolution achievable using the probe system. Data from a Derenzo-like resolution phantom was acquired, then scaled to obtain similar statistical quality as that of previous simulation studies. In this case, images were reconstructed using measurements of the PET ring alone and with the inclusion of the probe data. Images of the Na-22 source demonstrated a resolution of 1.5mm FWHM in the probe data, the PET ring resolution being approximately 6 mm. Profiles taken through the image of the Derenzo-like phantom showed a clear increase in spatial resolution. Improvements in peak-to-valley ratios of 50% and 38%, in the 4.8mm and 4.0mm phantom features respectively, were observed, while previously unresolvable 3.2mm features were brought to light by the addition of the probe. These results support the possibility of improving the image resolution of a clinical PET scanner using the silicon PET-probe

    Silicon detector for a Compton Camera in Nuclear Medical Imaging

    Get PDF
    Electronically collimated gamma ca\-me\-ras based on Com\-pton scattering in silicon pad sensors may improve imaging in nuclear medicine and bio-medical research. The work described here concentrates on the silicon pad detector developed for a prototype Compton camera. The silicon pad sensors are read out using low noise VLSI CMOS chips and novel fast triggering chips. Depending on the application a light weight and dense packaging of sensors and its readout electronics on a hybrid is required. We describe the silicon pad sensor and their readout with the newly designed hybrid. %The silicon detector of a Compton camera %may contain up to 10510^5~analogue channels requiring %a fast and low cost data acquisition system. We also describe a modular and low-cost data acquisition system (CCDAQ) based on a digital signal processor which is interfaced to the EPP port of personal computers. Using the CCDAQ and the hybrids energy spectra of gamma-ray photons from technetium (4399m^{\rm 99m}_{43}Tc) and americium (95241^{241}_{95}Am) were acquired with an energy resolution of 2.45~keV FWHM for the 140.5~keV photo-absorption line of 4399m^{\rm 99m}_{43}Tc. For all pads the discrimination threshold in the trigger chip was between (15 and 25)~keV

    Detecting small low emission radiating sources

    Full text link
    The article addresses the possibility of robust detection of geometrically small, low emission sources on a significantly stronger background. This problem is important for homeland security. A technique of detecting such sources using Compton type cameras is developed, which is shown on numerical examples to have high sensitivity and specificity and also allows to assign confidence probabilities of the detection. 2D case is considered in detail

    First results from the AX-PET demonstrator

    Get PDF
    The AX-PET demonstrator is based on a new concept in PET detectors, with LYSO crystals aligned along the z coordinate (patient's axis) and WLS (Wave-length shifter) strips placed orthogonal to them. This kind of structure permits to avoid parallax errors due to different depths of interaction of the photons in the crystals, to register the three coordinates of the impinging photon and to reconstruct Compton events. In this way both the spatial resolution and the sensitivity can be highly improved. Moreover, as both the LYSO crystals and the strips are readout via Geiger-mode Avalanche Photo Diodes (G-APDs) the detector is insensitive to magnetic fields and is then suitable to be used in a combined PET/MRI apparatus. A complete Monte Carlo simulation and dedicated reconstruction software, suited to the particular geometry arrangement, have been developed. The two final modules, each composed by 48 crystals and 156 WLS strips have been built and fully characterized in a dedicated test set-up. The results on the performances of the system obtained with a 22Na point source (0.25 mm diameter) are reported

    Experimental Evaluation For Joint Estimation Approach

    No full text
    Single Photon Emission Computed Tomography (SPECT) provides a potential to perform in vivo quantification of the radioactivity and dose distributions in the process of evaluating radiopharmaceuticals. The inherent modest resolution in SPECT impedes the potential of accurate quantification. Previously, we investigated a joint estimation approach for combining SPECT functional information with high resolution, structurally correlated MRI anatomical information to improve the accuracy of SPECT quantification, and the computer simulation results showed that this approach can exploit MRI region information that matches the SPECT functional information and to reduce artifacts caused by mismatched MRI anatomical information. In this paper, we further describe the experimental evaluation of the joint estimation approach using actual SPECT and MRI imaging with an animal-sized phantom. We will describe practical details in applying the joint estimation approach and present the experimental evalu..
    corecore