17 research outputs found

    Étude biomécanique du traitement de la scoliose idiopathique par orthèse: effets des paramètres de conception des corsets sur les corrections géométriques et sur les contraintes internes du rachis.

    Get PDF
    RÉSUMÉ La scoliose est une déformation tridimensionnelle évolutive de la colonne vertébrale et de la cage thoracique. Pour des déformations modérées, le principal traitement utilisé est le traitement par corset. Son objectif est, à court-terme, de réduire les déformations scoliotiques et, à long-terme, d’en empêcher la progression. Toutefois le traitement par corset tel qu’il est effectué actuellement n’est pas optimal. La conception des corsets repose encore principalement sur des principes empiriques et l’expérience variée des orthésistes. Aucune étude, clinique ou numérique, n’a étudié directement l’effet des paramètres de conception d’un corset sur son efficacité. De nombreuses controverses existent encore de ce fait sur les paramètres de conception optimaux. De même, aucune étude, expérimentale ou numérique, n’a tenté de prouver que le traitement par corset permet de modifier favorablement les contraintes agissant sur les plaques de croissance d’un sujet scoliotique, démontrant ainsi de façon théorique l’efficacité du traitement à empêcher la progression des déformations. L’objectif général de ce projet est donc d’étudier l’effet du design des corsets sur la correction immédiate des déformations scoliotiques et sur les contraintes agissant sur les plaques de croissance. L’hypothèse que nous souhaitons vérifier est que le traitement par corset peut annuler l’asymétrie des contraintes de compression s’exerçant sur les plaques de croissance à l’apex des courbures scoliotiques mais que cet effet est dépendant des paramètres de conception du corset, ce qui nécessite un ajustement optimal. Cette étude a été divisée en 5 parties. Une méthode a tout d’abord été développée pour représenter les forces de gravité sur un modèle éléments finis (MEF) du tronc d’un patient scoliotique tout en respectant sa géométrie 3D. Un processus d’optimisation a permis de déterminer les forces à soustraire au MEF, dont la géométrie a été construit à partir d’une reconstruction 3D par radiographies biplanaires du patient, afin d’obtenir suite à l’application de la gravité un modèle correspondant à la géométrie réelle du patient. La différence entre la position 3D des vertèbres issue des radiographies et la position simulée des vertèbres du modèle EF après application de la gravité s’est avéré être inférieure à 3 mm. Les contraintes de compression et les moments d’inflexion latérale agissant sur les plateaux vertébraux ont été calculés. Il a été constaté que dans le plan frontal la concavité des courbures scoliotiques était soumise à des contraintes de compression moyennes supérieures de 0.1 à 0.4 MPa à celles de la convexité.----------ABSTRACT Scoliosis is defined as a three-dimensional deformity of the spine and rib cage. For moderate deformities, bracing is the most common treatment. Its aim is to reduce the scoliotic deformities in a short-term perspective and to prevent their progression in a long-term perspective. The brace treatment is however not optimal as it is practiced today. The braces design is mostly based on empirical principles and on the experience of the orthotists. The effects of the design parameters of a brace on its efficiency have never been studied, experimentally or numerically. As a consequence, the optimal brace design parameters are still controversial. No study demonstrated that the brace treatment modifies favorably the stresses in the vertebral growth plates of a scoliotic patient, proving thus that the brace treatment is theoretically efficient in preventing the scoliotic deformities from progressing. The objective of this project was consequently to study the effect of the brace design on the immediate correction of the scoliotic deformities and on the spinal stresses. The hypothesis we want to verify is that the brace treatment is able to nullify the asymmetry of the compressive stresses exerted on the growth plates at the apex of the scoliotic curves but this effect depends on the design parameters of the brace and an optimal adjustment is thus required. This study was divided into 5 parts. A simulation process was firstly developed to represent the gravity forces in a finite element model (FEM) of the trunk of a scoliotic patient. An optimization process computed the forces to substract to the FEM, based on the 3D reconstruction of biplanar x-rays of the patient, in order to obtain after the inclusion of the gravity forces a model corresponding to the actual geometry of the patient. The difference in the vertebral positions between the geometry acquired form radiographs and the computed geometry of the model including the gravity forces was inferior to 3 mm. The forces and compressive stresses in the scoliotic spine were then computed. An asymmetrical load in the coronal plane, particularly at the apices of the scoliotic curves, was present. Difference of mean compressive stresses between concavity and convexity of the scoliotic curves ranged between 0.1 and 0.4 MPa

    Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial

    Get PDF
    Purpose Clinical assessment of immediate in-brace effect of braces designed using CAD/CAM and FEM vs. only CAD/CAM for conservative treatment of AIS, using a randomized blinded and controlled study design. Methods Forty AIS patients were prospectively recruited and randomized into two groups. For 19 patients (control group), the brace was designed using a scan of patient’s torso and a conventional CAD/CAM approach (CtrlBrace). For the 21 other patients (test group), the brace was additionally designed using finite element modeling (FEM) and 3D reconstructions of spine, rib cage and pelvis (NewBrace). The NewBrace design was simulated and iteratively optimized to maximize the correction and minimize the contact surface and material. Results Both groups had comparable age, sex, weight, height, curve type and severity. Scoliosis Research Society standardized criteria for bracing were followed. Average Cobb angle prior to bracing was 27° and 28° for main thoracic (MT) and lumbar (L) curves, respectively, for the control group, while it was 33° and 28° for the test group. CtrlBraces reduced MT and L curves by 8° (29 %) and 10° (40 %), respectively, compared to 14° (43 %) and 13° (46 %) for NewBraces, which were simulated with a difference inferior to 5°. NewBraces were 50 % thinner and had 20 % less covering surface than CtrlBraces. Conclusion Braces designed with CAD/CAM and 3D FEM simulation were more efficient and lighter than standard CAD/CAM TLSO’s at first immediate in-brace evaluation. These results suggest that long-term effect of bracing in AIS may be improved using this new platform for brace fabrication

    Braces optimized with computer-assisted design and simulations are lighter, more comfortable, and more efficient than plaster-cast braces for the treatment of adolescent idiopathic scoliosis

    Get PDF
    Study Design Feasibility study to compare the effectiveness of 2 brace design and fabrication methods for treatment of adolescent idiopathic scoliosis: a standard plaster-cast method and a computational method combining computer-aided design and fabrication and finite element simulation. Objectives To improve brace design using a new brace design method. Summary of Background Data Initial in-brace correction and patient's compliance to treatment are important factors for brace efficiency. Negative cosmetic appearance and functional discomfort resulting from pressure points, humidity, and restriction of movement can cause poor compliance with the prescribed wearing schedule. Methods A total of 15 consecutive patients with brace prescription were recruited. Two braces were designed and fabricated for each patient: a standard thoracolumbo-sacral orthosis brace fabricated using plaster-cast method and an improved brace for comfort (NewBrace) fabricated using a computational method combining computer-aided design and fabrication software (Rodin4D) and a simulation platform. Three-dimensional reconstructions of the torso and the trunk skeleton were used to create a personalized finite element model, which was used for brace design and predict correction. Simulated pressures on the torso and distance between the brace and patient's skin were used to remove ineffective brace material situated at more than 6 mm from the patient's skin. Biplanar radiographs of the patient wearing each brace were taken to compare their effectiveness. Patients filled out a questionnaire to compare their comfort. Results NewBraces were 61% thinner and had 32% less material than standard braces with equivalent correction. NewBraces were more comfortable (11 of 15 patients) or equivalent to (4 of 15 cases) standard braces. Simulated correction was simulated within 5° compared with in-brace results. Conclusions This study demonstrates the feasibility of designing lighter and more comfortable braces with correction equivalent to standard braces. This design platform has the potential to further improve brace correction efficiency and its compliance

    Finite Element Analysis Comparing a PEEK Posterior Fixation Device Versus Pedicle Screws for Lumbar Fusion

    Get PDF
    BACKGROUND: Pedicle screw loosening and breakage are common causes of revision surgery after lumbar fusion. Thus, there remains a continued need for supplemental fixation options that offer immediate stability without the associated failure modes. This finite element analysis compared the biomechanical properties of a novel cortico-pedicular posterior fixation (CPPF) device with those of a conventional pedicle screw system (PSS). METHODS: The CPPF device is a polyetheretherketone strap providing circumferential cortical fixation for lumbar fusion procedures via an arcuate tunnel. Using a validated finite element model, we compared the stability and load transfer characteristics of CPPF to intact conditions under a 415 N follower load and PSS conditions under a 222 N preload. Depending on the instrumented levels, two different interbody devices were used: a lateral lumbar interbody device at L4-5 or an anterior lumbar interbody device at L5-S1. Primary outcomes included range of motion of the functional spinal units and anterior load transfer, defined as the total load through the disk and interbody device after functional motion and follower load application. RESULTS: Across all combinations of interbody devices and lumbar levels evaluated, CPPF consistently demonstrated significant reductions in flexion (ranging from 90 to 98%), extension (ranging from 88 to 94%), lateral bending (ranging from 75 to 80%), and torsion (ranging from 77 to 86%) compared to the intact spine. Stability provided by the CPPF device was comparable to PSS in all simulations (range of motion within 0.5 degrees for flexion-extension, 0.6 degrees for lateral bending, and 0.5 degrees for torsion). The total anterior load transfer was higher with CPPF versus PSS, with differences across all tested conditions ranging from 128 to 258 N during flexion, 89-323 N during extension, 135-377 N during lateral bending, 95-258 N during torsion, and 82-250 N during standing. CONCLUSION: Under the modeled conditions, cortico-pedicular fixation for supplementing anterior or lateral interbody devices between L4 and S1 resulted in comparable stability based on range of motion measures and less anterior column stress shielding based on total anterior load transfer measures compared to PSS. Clinical studies are needed to confirm these finite element analysis findings

    Simulation biomécanique du traitement de la scoliose idiopathique par orthèse : application à la conception rationnelle de corsets

    Get PDF
    Revue des connaissances -- Problématique et objectifs du projet -- Modélisation du tronc humain, modélisation du corset et simulation de son effet immédiat -- Validation de la modélisation et du processus de simulation -- Optimisation de la conception de corsets, étude préliminaire
    corecore