Titre: CAD/CAM and biomechanical simulations vs. standard technique for Title: the design of braces in adolescent idiopathic scoliosis: first results
Auteurs: Frederique Desbiens-Blais, Julien Clin, Stefan Parent, Hubert Labelle, Authors: \& Carl-Éric Aubin
Date: 2012
Type: Communication de conférence / Conference or Workshop Item
Desbiens-Blais, F., Clin, J., Parent, S., Labelle, H., \& Aubin, C.-É. (mai 2012). CAD/CAM and biomechanical simulations vs. standard technique for the design of
Référence: braces in adolescent idiopathic scoliosis: first results [Présentation]. Dans 9th
Citation: International Conference on Conservative Management of Spinal Deformities (SOSORT 2023), Milan, Italy (1 page). Publié dans Scoliosis, 8(S1).
https://doi.org/10.1186/1748-7161-8-s1-041

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: PolyPublie URL:	https://publications.polymtl.ca/54235/
Version:	Version officielle de l'éditeur / Published version Révisé par les pairs / Refereed
Conditions d'utilisation: Terms of Use:	CC BY

D Document publié chez l'éditeur officiel
 Document issued by the official publisher

Nom de la conférence:
Conference Name:
Date et lieu:
Date and Location:
Maison d'édition:
Publisher:
URL officiel:
Official URL:

Mention légale:
Legal notice

9th International Conference on Conservative Management of Spinal Deformities (SOSORT 2023)

2012-05-10-2012-05-12, Milan, Italy
BioMed Central
https://doi.org/10.1186/1748-7161-8-s1-041
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

CAD/CAM and biomechanical simulations vs. standard technique for the design of braces in adolescent idiopathic scoliosis: first results

F Desbiens-Blais ${ }^{1,2^{*}}$, J Clin ${ }^{1,2}$, S Parent ${ }^{2}$, H Labelle ${ }^{2}$, CE Aubin ${ }^{1,2}$
From 9th International Conference on Conservative Management of Spinal Deformities - SOSORT 2012 Annual Meeting
Milan, Italy. 10-12 May 2012

Background

Brace design is mostly done using empirical methods. Recent advances in CAD/CAM and computer biomechanical simulations now allow designing, optimizing and fabricating a novel generation of braces with expected biomechanical improvements [1].

Aim

This study Aims at comparing the effectiveness of this new brace design technique to a standard technique (TLSO) system for the treatment of adolescent idiopathic scoliosis (AIS).

Methods

So far, 4 AIS patients were recruited. Two braces were built for each patient: 1) a standard TLSO designed using the plaster-cast method (Std Brace), and 2) a brace designed and fabricated using a biomechanical 3D finite element model personalized to the patient's geometry, and a CAD/CAM software (NewBrace). NewBrace was optimized using a computational brace simulator that allows virtual installation of the brace on the patient model, and prediction of its effect before fabrication. Several virtual braces were thus iteratively tested, and the one giving the best immediate correction was chosen for refinement by the orthotist, and fabricated using a computer-aided carver. Immediate brace effectiveness was assessed using radiographs in both braces.

Results

For the first 4 patients, the Std Brace corrected the thoracic and lumbar Cobb angles by 51% and 45% respectively, while NewBrace corrected these angles by 41% and 48%. There was little effect of the sagittal curves, and both braces maintained the coronal balance. The patients were more comfortable in the NewBrace. The predictions of the brace simulator were found to be reliable.

Conclusion

These first results showed the feasibility of a new technique, to design braces using a biomechanical simulation tool, and assess their effectiveness with respect to current design standards. The optimization process of the brace design is currently being improved. An extended study on more cases (10 to 15 patients should be included in the study before May) is under way to fully assess this new design paradigm.

Author details

${ }^{1}$ Ecole Polytechnique de Montreal, Montreal, Canada. ${ }^{2}$ CHU Sainte-Justine, Montreal, Canada

Published: 3 June 2013

Reference

1. Clin J, Aubin CE, Parent S, Sangole A, Labelle H: Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model. Eur Spine J 19(7):1169-1178.

doi:10.1186/1748-7161-8-S1-O41

Cite this article as: Desbiens-Blais et al.: CAD/CAM and biomechanical simulations vs. standard technique for the design of braces in adolescent idiopathic scoliosis: first results. Scoliosis 2013 8(Suppl 1):O41.

[^0]
[^0]: ${ }^{1}$ Ecole Polytechnique de Montreal, Montreal, Canada
 Full list of author information is available at the end of the article

