2,722 research outputs found

    Mass influx obtained from low-light-level television observations of faint meteors

    Get PDF
    Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources

    Space station particulate contamination environment

    Get PDF
    The origin of particulate contamination on the Space Station will mostly be from pre-launch operations. The adherence and subsequent release of these particles during space flight are discussed. Particle size, release velocity, and release direction are important in determining particle behavior in the vicinity of the vehicle. The particulate environment at the principal science instrument locations is compared to the space shuttle bay environment. Recommendations for possibly decreasing the particulate contamination are presented

    Spacelab mission 2: Experimental descriptions

    Get PDF
    The second Spacelab Mission and the 12 multidisciplinary experiments selected to fly on board are described. These experiments include the following: vitamin D metabolities and bone demineralization; interaction of oxygen and gravity influenced lignification; ejectable plasma diagnostics package; plasma depletion experiments for ionospheric and radio astronomical studies; small helium cooled IR telescope; elemental composition and energy spectra of cosmic ray nuclei; hard X-ray imaging of clusters of galaxies and other extended X-ray sources; solar magnetic and velocity field measurement system; solar coronal helium abundance Spacelab experiment; solar UV high resolution telescope and spectroraph; solar UV spectral irradiance monitor; and properties of superfluid helium in zero-G

    A digital imaging photometry system for cometary data acquisition

    Get PDF
    This report describes a digital imaging photometry system developed in the Space Science Laboratory at the Marshall Space Flight center. The photometric system used for cometary data acquisition is based on an intensified secondary electron conduction (ISEC) vidicon coupled to a versatile data acquisition system which allows real-time interactive operation. Field tests on the Orion and Rosette nebulas indicate a limiting magnitude of approximately m sub v = 14 over the 40 arcmin field-of-view. Observations were conducted of Comet Giacobini-Zinner in August 1985. The resulting data are discussed in relation to the capabilities of the digital analysis system. The development program concluded on August 31, 1985

    Observational Constraints on the Averaged Universe

    Full text link
    Averaging in general relativity is a complicated operation, due to the general covariance of the theory and the non-linearity of Einstein's equations. The latter of these ensures that smoothing spacetime over cosmological scales does not yield the same result as solving Einstein's equations with a smooth matter distribution, and that the smooth models we fit to observations need not be simply related to the actual geometry of spacetime. One specific consequence of this is a decoupling of the geometrical spatial curvature term in the metric from the dynamical spatial curvature in the Friedmann equation. Here we investigate the consequences of this decoupling by fitting to a combination of HST, CMB, SNIa and BAO data sets. We find that only the geometrical spatial curvature is tightly constrained, and that our ability to constrain dark energy dynamics will be severely impaired until we gain a thorough understanding of the averaging problem in cosmology.Comment: 6 pages, 4 figure

    Proceedings of the Shuttle-based Cometary Science Workshop: a Forum for the Presentation and Discussion of Possible Shuttle-based Experiments and Observations of Comets and Cometary-like Materials

    Get PDF
    The prospects of cometary research from the space shuttle are examined. Topics include: the shuttle as research environment; on-board experiments at zero-gravity and release of gas and dust to simulate cometary phenomena; and cometary observations from space

    Dynamics of a lattice Universe

    Get PDF
    We find a solution to Einstein field equations for a regular toroidal lattice of size L with equal masses M at the centre of each cell; this solution is exact at order M/L. Such a solution is convenient to study the dynamics of an assembly of galaxy-like objects. We find that the solution is expanding (or contracting) in exactly the same way as the solution of a Friedman-Lema\^itre-Robertson-Walker Universe with dust having the same average density as our model. This points towards the absence of backreaction in a Universe filled with an infinite number of objects, and this validates the fluid approximation, as far as dynamics is concerned, and at the level of approximation considered in this work.Comment: 14 pages. No figure. Accepted version for Classical and Quantum Gravit

    Non-local Correlations are Generic in Infinite-Dimensional Bipartite Systems

    Full text link
    It was recently shown that the nonseparable density operators for a bipartite system are trace norm dense if either factor space has infinite dimension. We show here that non-local states -- i.e., states whose correlations cannot be reproduced by any local hidden variable model -- are also dense. Our constructions distinguish between the cases where both factor spaces are infinite-dimensional, where we show that states violating the CHSH inequality are dense, and the case where only one factor space is infinite-dimensional, where we identify open neighborhoods of nonseparable states that do not violate the CHSH inequality but show that states with a subtler form of non-locality (often called "hidden" non-locality) remain dense.Comment: 8 pages, RevTe

    Generic Bell correlation between arbitrary local algebras in quantum field theory

    Full text link
    We prove that for any two commuting von Neumann algebras of infinite type, the open set of Bell correlated states for the two algebras is norm dense. We then apply this result to algebraic quantum field theory -- where all local algebras are of infinite type -- in order to show that for any two spacelike separated regions, there is an open dense set of field states that dictate Bell correlations between the regions. We also show that any vector state cyclic for one of a pair of commuting nonabelian von Neumann algebras is entangled (i.e., nonseparable) across the algebras -- from which it follows that every field state with bounded energy is entangled across any two spacelike separated regions.Comment: Third version; correction in the proof of Proposition
    • …
    corecore