140 research outputs found
Nanofibers: Friend or Foe?
Since the early 1990s nanofibers, particularly those of a carbonaceous content [1] have received heightened interest due to their advantageous physico-chemical characteristics (e.g., high strength, stiffness, semi-conductor, increased thermal conductivity and one of the highest Young’s modulus [2]).[...
Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity
After the health catastrophe resulting from the widespread use of asbestos which was once hailed as a new miracle material, the increasing use of carbon nanotubes (CNTs) has spawned major concern due to their similarities in terms of size, shape and poor solubility. Assessment of genotoxicity has shown that CNTs can damage DNA in vitro and in vivo. The genotoxic potential of different CNT samples varies considerably, however, with negative findings reported in a number of studies, probably due to the enormous heterogeneity of CNTs. The observed spectrum of genotoxic effects shows similarities with those reported for asbestos fibres. Mutagenicity has been found in vivo but in bacterial assays both asbestos and CNTs have mostly tested negative. An overview of key experimental observations on CNT-induced genotoxicity is presented in the first half of this review.In the second part, the potential mechanisms of CNT-elicited genotoxicity are discussed. Whereas CNTs possess intrinsic ROS-scavenging properties they are capable of generating intracellular ROS upon interaction with cellular components, and can cause antioxidant depletion. These effects have been attributed to their Fenton-reactive metals content. In addition, CNTs can impair the functionality of the mitotic apparatus. A noteworthy feature is that frustrated phagocytosis, which is involved in asbestos-induced pathology, has been observed for specific CNTs as well. The involvement of other mechanisms generally implicated in particle toxicity, such as phagocyte activation and impairment of DNA repair, is largely unknown at present and needs further investigation
A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry
Determination of the cell type specific response is essential towards understanding the cellular mechanisms associated with disease states as well as assessing cell-based targeting of effective therapeutic agents. Recently, there have been increased calls for advanced in vitro multi-cellular models that provide reliable and valuable tools correlative to in vivo. In this pursuit the ability to assess the cell type specific response is imperative. Herein, we report a novel approach towards resolving each specific cell type of a multi-cellular model representing the human lung epithelial tissue barrier via multi-colour flow cytometry (FACS). We proved via ≤ five-colour FACS that the manipulation of this in vitro model allowed each cell type to be resolved with no impact upon cell viability. Subsequently, four-colour FACS verified the ability to determine the biochemical effect (e.g. oxidative stress) of each specific cell type. This technique will be vital in gaining information upon cellular mechanics when using next-level, multi- cellular in vitro strategies
A systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective
The number of publications in the field of nanogenotoxicology and the amount of genotoxicity data on nanomaterials (NMs) in several databases generated by European Union (EU) funded projects have increased during the last decade. In parallel, large research efforts have contributed to both our understanding of key physico-chemical (PC) parameters regarding NM characterization as well as the limitations of toxicological assays originally designed for soluble chemicals. Hence, it is becoming increasingly clear that not all of these data are reliable or relevant from the regulatory perspective. The aim of this systematic review is to investigate the extent of studies on genotoxicity of NMs that can be considered reliable and relevant by current standards and bring focus to what is needed for a study to be useful from the regulatory point of view. Due to the vast number of studies available, we chose to limit our search to two large groups, which have raised substantial interest in recent years: nanofibers (including nanotubes) and metal-containing nanoparticles. Focusing on peer-reviewed publications, we evaluated the completeness of PC characterization of the tested NMs, documentation of the model system, study design, and results according to the quality assessment approach developed in the EU FP-7 GUIDEnano project. Further, building on recently published recommendations for best practices in nanogenotoxicology research, we created a set of criteria that address assay-specific reliability and relevance for risk assessment purposes. Articles were then reviewed, the qualifying publications discussed, and the most common shortcomings in NM genotoxicity studies highlighted. Moreover, several EU projects under the FP7 and H2020 framework set the aim to collectively feed the information they produced into the eNanoMapper database. As a result, and over the years, the eNanoMapper database has been extended with data of various quality depending on the existing knowledge at the time of entry. These activities are highly relevant since negative results are often not published. Here, we have reviewed the NanoInformaTIX instance under the eNanoMapper database, which hosts data from nine EU initiatives. We evaluated the data quality and the feasibility of use of the data from a regulatory perspective for each experimental entry
Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture
Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers. Using a 3D in vitro triple cell coculture model of the human epithelial airway barrier, it was observed that cellulose nanofibers isolated from cotton (CCN) elicited a significantly (p < 0.05) lower cytotoxicity and (pro-)inflammatory response than multiwalled CNTs (MWCNTs) and crocidolite asbestos fibers (CAFs). Electron tomography analysis also revealed that the intracellular localization of CCNs is different from that of both MWCNTs and CAFs, indicating fundamental differences between each different nanofibre type in their interaction with the human lung cell coculture. Thus, the data shown in the present study highlights that not only the length and stiffness determine the potential detrimental (biological) effects of any nanofiber, but that the material used can significantly affect nanofiber–cell interactions
A Comparative Study of Different In Vitro Lung Cell Culture Systems to Assess the Most Beneficial Tool for Screening the Potential Adverse Effects of Carbon Nanotubes
To determine the potential inhalatory risk posed by carbon nanotubes (CNTs), a tier-based approach beginning with an in vitro assessment must be adopted. The purpose of this study therefore was to compare 4 commonly used in vitro systems of the human lung (human blood monocyte-derived macrophages [MDM] and monocyte-derived dendritic cells [MDDC], 16HBE14o- epithelial cells, and a sophisticated triple cell co-culture model [TCC-C]) via assessment of the biological impact of different CNTs (single-walled CNTs [SWCNTs] and multiwalled CNTs [MWCNTs]) over 24h. No significant cytotoxicity was observed with any of the cell types tested, although a significant (p < .05), dose-dependent increase in tumor necrosis factor (TNF)-α following SWCNT and MWCNT exposure at concentrations up to 0.02mg/ml to MDM, MDDC, and the TCC-C was found. The concentration of TNF-α released by the MDM and MDDC was significantly higher (p < .05) than the TCC-C. Significant increases (p < .05) in interleukin (IL)-8 were also found for both 16HBE14o- epithelial cells and the TCC-C after SWCNTs and MWCNTs exposure up to 0.02mg/ml. The TCC-C, however, elicited a significantly (p < .05) higher IL-8 release than the epithelial cells. The oxidative potential of both SWCNTs and MWCNTs (0.005-0.02mg/ml) measured by reduced glutathione (GSH) content showed a significant difference (p < .05) between each monoculture and the TCC-C. It was concluded that because only the co-culture system could assess each endpoint adequately, that, in comparison with monoculture systems, multicellular systems that take into consideration important cell type-to-cell type interactions could be used as predictive in vitro screening tools for determining the potential deleterious effects associated with CNT
Integrating silver compounds and nanoparticles into ceria nanocontainers for antimicrobial applications
Silver compounds and nanoparticles (NPs) are gaining increasing interest in medical applications, specifically in the treatment and prevention of biomaterial-related infections. However, the silver release from these materials, resulting in a limited antimicrobial activity, is often difficult to control. In this paper, ceria nanocontainers were synthesized by a template-assisted method and were then used to encapsulate silver nitrate (AgNO₃/CeO₂ nanocontainers). Over the first 30 days, a significant level of silver was released, as determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). A novel type of ceria container containing silver NPs (AgNP/CeO₂ containers) was also developed using two different template removal methods. The presence of AgNPs was confirmed both on the surface and in the interior of the ceria containers by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Upon removal of the template by calcination, the silver was released over a period exceeding three months (>90 days). However, when the template was removed by dissolution, the silver release was shortened to ≤14 days. The antimicrobial activity of the silver-containing CeO₂ containers was observed and the minimum bactericidal concentration (MBC) was determined using the broth dilution method. Investigation on human cells, using a model epithelial barrier cell type (A549 cells), highlighted that all three samples induced a heightened cytotoxicity leading to cell death when exposed to all containers in their raw form. This was attributed to the surface roughness of the CeO₂ nanocontainers and the kinetics of the silver release from the AgNO₃/CeO₂ and AgNP/CeO₂ nanocontainers. In conclusion, despite the need for further emphasis on their biocompatibility, the concept of the AgNP/CeO₂ nanocontainers offers a potentially alternative long-term antibactericidal strategy for implant materials
Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure
Cellulose nanocrystals (CNCs) exhibit advantageous chemical and mechanical properties that render them attractive for a wide range of applications. During the life-cycle of CNC containing materials the nanocrystals could be released and become airborne, posing a potential inhalatory exposure risk towards humans. Absent reliable and dose-controlled models that mimic this exposure in situ is a central issue in gaining an insight into the CNC-lung interaction. Here, an Air Liquid Interface Cell Exposure system (ALICE), previously designed for studies of spherical nanoparticles, was used for the first time to establish a realistic physiological exposure test method for inhaled fiber shaped nano-objects; in this case, CNCs isolated from cotton. Applying a microscopy based approach the spatially homogenous deposition of CNCs was demonstrated as a prerequisite of the functioning of the ALICE. Furthermore, reliability and controllability of the system to nebulise high aspect ratio nanomaterials (HARN, e.g. CNCs) was shown. This opens the potential to thoroughly investigate the inhalatory risk of CNCs in vitro using a realistic exposure system
Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro
It is known that the nanoparticle–cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle–protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability, and how this significantly influences the subsequent nanoparticle–cell interaction in vitro. Therefore, different surface charged superparamagnetic iron oxide nanoparticles were synthesized and characterized. Similar adsorbed protein profiles were identified following incubation in supplemented cell culture media, although cellular uptake varied significantly between the different particles. However, positively charged nanoparticles displayed a significantly lower colloidal stability than neutral and negatively charged particles while showing higher non-sedimentation driven cell-internalization in vitro without any significant cytotoxic effects. The results of this study strongly indicate therefore that an understanding of the aggregation state of NPs in biological fluids is crucial in regards to their biological interaction(s)
Critical review of the current and future challenges associated with advanced in vitro systems towards the study of nanoparticle (secondary) genotoxicity
The Publisher's final version can be found by following the DOI link. open access articleWith the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity
- …