86 research outputs found
The Neuroscience Peer Review Consortium
As the Neuroscience Peer Review Consortium (NPRC) ends its first year, it is worth looking back to see how the experiment has worked
The Neuroscience Peer Review Consortium
The Neuroscience Peer Review Consortium (NPRC) was conceived in the summer of 2007 at a meeting of editors and publishers of neuroscience journals. One of the working groups addressed whether it was possible to construct a system for permitting authors whose manuscript received supportive reviews at one journal but was not accepted to send a revised manuscript together with its first round of reviews to a new journal for the second round. This would speed up the review process and reduce the work for reviewers and editors. The working group not only designed a framework for transferring reviews among journals, but also implemented it as the NPRC. By the fall of 2007, more than a dozen major journals had signed onto the NPRC, sufficient to launch the experiment in January, 2008. We invite authors who have not yet used the NPRC to try this method for appropriate manuscripts
Armodafinil-induced wakefulness in animals with ventrolateral preoptic lesions
Armodafinil is the pharmacologically active R-enantiomer of modafinil, a widely prescribed wake-promoting agent used to treat several sleep-related disorders including excessive daytime sleepiness associated with narcolepsy, shift work sleep disorder, and obstructive sleep apnea/hypopnea syndrome. Remarkably, however, the neuronal circuitry through which modafinil exerts its wake-promoting effects remains unresolved. In the present study, we sought to determine if the wake-promoting effects of armodafinil are mediated, at least in part, by inhibiting the sleep-promoting neurons of the ventrolateral preoptic (VLPO) nucleus. To do so, we measured changes in waking following intraperitoneal administration of armodafinil (200 mg/kg) or the psychostimulant methamphetamine (1 mg/kg) in rats with cell-body specific lesion of the VLPO. Rats with histologically confirmed lesions of the VLPO demonstrated a sustained increase in wakefulness at baseline, but the increase in wakefulness following administration of both armodafinil and methamphetamine was similar to that of intact animals. These data suggest that armodafinil increases wakefulness by mechanisms that extend beyond inhibition of VLPO neurons
Neural Circuitry Underlying Waking Up to Hypercapnia
Obstructive sleep apnea is a sleep and breathing disorder, in which, patients suffer from cycles of atonia of airway dilator muscles during sleep, resulting in airway collapse, followed by brief arousals that help re-establish the airway patency. These repetitive arousals which can occur hundreds of times during the course of a night are the cause of the sleep-disruption, which in turn causes cognitive impairment as well as cardiovascular and metabolic morbidities. To prevent this potential outcome, it is important to target preventing the arousal from sleep while preserving or augmenting the increase in respiratory drive that reinitiates breathing, but will require understanding of the neural circuits that regulate the cortical and respiratory responses to apnea. The parabrachial nucleus (PB) is located in rostral pons. It receives chemosensory information from medullary nuclei that sense increase in CO2 (hypercapnia), decrease in O2 (hypoxia) and mechanosensory inputs from airway negative pressure during apneas. The PB area also exerts powerful control over cortical arousal and respiration, and therefore, is an excellent candidate for mediating the EEG arousal and restoration of the airway during sleep apneas. Using various genetic tools, we dissected the neuronal sub-types responsible for relaying the stimulus for cortical arousal to forebrain arousal circuits. The present review will focus on the circuitries that regulate waking-up from sleep in response to hypercapnia
The Need to Feed Homeostatic and Hedonic Control of Eating
AbstractFeeding provides substrate for energy metabolism, which is vital to the survival of every living animal and therefore is subject to intense regulation by brain homeostatic and hedonic systems. Over the last decade, our understanding of the circuits and molecules involved in this process has changed dramatically, in large part due to the availability of animal models with genetic lesions. In this review, we examine the role played in homeostatic regulation of feeding by systemic mediators such as leptin and ghrelin, which act on brain systems utilizing neuropeptide Y, agouti-related peptide, melanocortins, orexins, and melanin concentrating hormone, among other mediators. We also examine the mechanisms for taste and reward systems that provide food with its intrinsically reinforcing properties and explore the links between the homeostatic and hedonic systems that ensure intake of adequate nutrition
Lateral hypothalamic innervation of the cerebral cortex: Immunoreactive staining for a peptide resembling but immunochemically distinct from pituitary/arcuate [alpha]-melanocyte stimulating hormone
The combination of retrograde transport of fluorescent dyes and indirect immunofluorescence has been used to study the putative neurotransmitter specificity of the tuberal lateral hypothalamic projection to the cerebral cortex. Injections of either fast blue or diamidino yellow dye into the cerebral cortex or hippocampus retrogradely labeled large, multipolar neurons scattered through the lateral hypothalamic area and zona incerta at the level of the ventromedial nucleus of the hypothalamus. Approximately 80% of these neurons stained immunohistochemically with an antiserum against [alpha]-melanocyte stimulating hormone ([alpha]-MSH). A second population of smaller, predominantly bipolar [alpha]-MSH-like immunoreactive neurons was seen in the arcuate nucleus and retrochiasmatic area, but none of these projected to the cerebral cortex. Immunohistochemical staining for ACTH (18-24), another proopiomelanocortin series peptide, or with an antiserum against [alpha]-MSH (4-10) demonstrated only the second of these cell groups. Our results indicate that the tuberal lateral hypothalamic projection to the cerebral cortex contains a substance similar but not identical to [alpha]-MSH, and that this material is probably not derived from the same proopiomelanocortin precursor as true [alpha]-MSH.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26352/1/0000439.pd
Recommended from our members
Reassessing the Role of Histaminergic Tuberomammillary Neurons in Arousal Control
The histaminergic neurons of the tuberomammillary nucleus (TMN(HDC)) of the posterior hypothalamus have long been implicated in promoting arousal. More recently, a role for GABAergic signaling by the TMN(HDC) neurons in arousal control has been proposed. Here, we investigated the effects of selective chronic disruption of GABA synthesis (via genetic deletion of the GABA synthesis enzyme, glutamic acid decarboxylase 67) or GABAergic transmission (via genetic deletion of the vesicular GABA transporter (VGAT)) in the TMN(HDC) neurons on sleep-wake in male mice. We also examined the effects of acute chemogenetic activation and optogenetic inhibition of TMN(HDC) neurons upon arousal in male mice. Unexpectedly, we found that neither disruption of GABA synthesis nor GABAergic transmission altered hourly sleep-wake quantities, perhaps because very few TMN(HDC) neurons coexpressed VGAT. Acute chemogenetic activation of TMN(HDC) neurons did not increase arousal levels above baseline but did enhance vigilance when the mice were exposed to a behavioral cage change challenge. Similarly, acute optogenetic inhibition had little effect upon baseline levels of arousal. In conclusion, we could not identify a role for GABA release by TMN(HDC) neurons in arousal control. Further, if TMN(HDC) neurons do release GABA, the mechanism by which they do so remains unclear. Our findings support the view that TMN(HDC) neurons may be important for enhancing arousal under certain conditions, such as exposure to a novel environment, but play only a minor role in behavioral and EEG arousal under baseline conditions.SIGNIFICANCE STATEMENT The histaminergic neurons of the tuberomammillary nucleus of the hypothalamus (TMN(HDC)) have long been thought to promote arousal. Additionally, TMN(HDC) neurons may counter-regulate the wake-promoting effects of histamine through co-release of the inhibitory neurotransmitter, GABA. Here, we show that impairing GABA signaling from TMN(HDC) neurons does not impact sleep-wake amounts and that few TMN(HDC) neurons contain the vesicular GABA transporter, which is presumably required to release GABA. We further show that acute activation or inhibition of TMN(HDC) neurons has limited effects upon baseline arousal levels and that activation enhances vigilance during a behavioral challenge. Counter to general belief, our findings support the view that TMN(HDC) neurons are neither necessary nor sufficient for the initiation and maintenance of arousal under baseline conditions
Supramammillary glutamate neurons are a key node of the arousal system
Basic and clinical observations suggest that the caudal hypothalamus comprises a key node of the ascending arousal system, but the cell types underlying this are not fully understood. Here we report that glutamate-releasing neurons of the supramammillary region (SuMvglut2) produce sustained behavioral and EEG arousal when chemogenetically activated. This effect is nearly abolished following selective genetic disruption of glutamate release from SuMvglut2 neurons. Inhibition of SuMvglut2 neurons decreases and fragments wake, also suppressing theta and gamma frequency EEG activity. SuMvglut2 neurons include a subpopulation containing both glutamate and GABA (SuMvgat/vglut2) and another also expressing nitric oxide synthase (SuMNos1/Vglut2). Activation of SuMvgat/vglut2 neurons produces minimal wake and optogenetic stimulation of SuMvgat/vglut2 terminals elicits monosynaptic release of both glutamate and GABA onto dentate granule cells. Activation of SuMNos1/Vglut2 neurons potently drives wakefulness, whereas inhibition reduces REM sleep theta activity. These results identify SuMvglut2 neurons as a key node of the wake−sleep regulatory system
A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution
The “dorsal pons”, or “dorsal pontine tegmentum” (dPnTg), is part of the brainstem. It is a complex, densely packed region whose nuclei are involved in regulating many vital functions. Notable among them are the parabrachial nucleus, the Kölliker Fuse, the Barrington nucleus, the locus coeruleus, and the dorsal, laterodorsal, and ventral tegmental nuclei. In this study, we applied single-nucleus RNA-seq (snRNA-seq) to resolve neuronal subtypes based on their unique transcriptional profiles and then used multiplexed error robust fluorescence in situ hybridization (MERFISH) to map them spatially. We sampled ~1 million cells across the dPnTg and defined the spatial distribution of over 120 neuronal subtypes. Our analysis identified an unpredicted high transcriptional diversity in this region and pinpointed the unique marker genes of many neuronal subtypes. We also demonstrated that many neuronal subtypes are transcriptionally similar between humans and mice, enhancing this study’s translational value. Finally, we developed a freely accessible, GPU and CPU-powered dashboard (http://harvard.heavy.ai:6273/) that combines interactive visual analytics and hardware-accelerated SQL into a data science framework to allow the scientific community to query and gain insights into the data
- …