446 research outputs found

    Bowen ratio estimates of evapotranspiration for stands on the Virgin River in Southern Nevada

    Get PDF
    A Bowen ratio energy balance was conducted over a Tamarix ramosissima (saltcedar) stand growing in a riparian corridor along the Virgin River in southern Nevada. Measurements in two separate years were compared and contrasted on the basis of changes in growing conditions. In 1994, a drought year, record high temperatures, dry winds, and a falling water table caused partial wilt of outer smaller twigs in the canopy of many trees in the stand around the Bowen tower. Subsequently, evapotranspiration (ET) estimates declined dramatically over a 60‐day period (11 mm d−1 tod−1). In 1995, the Virgin River at the Bowen tower area changed its course, hydrologically isolating the Tamarix stand in the vicinity of the tower. In 1996, a 25% canopy loss was visually estimated for the Tamarix growing in the area of the tower. Higher soil temperatures relative to air temperatures were recorded in 1996 in response to this loss in canopy. With a more open canopy, thermally induced turbulence was observed in 1996. On day 160 of 1996, a 28°C rise over a 9‐hour period was correlated with increased wind speeds of greater than 4 m s−1. Subsequently, higher ET estimates were made in 1996 compared to 1994 (145 cm versus 75 cm). However, the energy balance was dominated by advection in 1996, with latent energy flux exceeding net radiation 65% of the measurement days compared to only 11% in 1994. We believe this advection was on a scale of the floodplain (hundreds of meters) as opposed to regional advection, since the majority of wind (90%) was in a N–S direction along the course of the river, and that a more open canopy allowed the horizontal transfer of energy into the Tamarix stand at the Bowen tower. Our results suggest that Tamarix has the potential to be both a low water user and a high water user, depending on moisture availability, canopy development, and atmospheric demand, and that advection can dominate energy balances and ET in aridland riparian zones such as the Virgin River

    Human milk bile-salt stimulated lipase Sequence similarity with rat lysophospholipase and homology with the active site region of cholinesterases

    Get PDF
    AbstractTo determine the active site residue, human milk bile-salt stimulated lipase (BSSL) was labelled with [3H]diisopropyl fluorophosphate (DFP). Partial sequence analysis or cyanogen bromide fragments (a total of 146 residues from 6 peptides) revealed 84% sequence identity with a putative rat lysophospholipase. Sequence analysis of a [3H]DFP-labelled peptide indicated that the active site serine was contained in the sequence Gly-Glu-Scr-Ala-Gly. In addition to similarity with rat lysophospholipase, this sequence showed homology with regions of human butyrylcholinesterase and electric ray acetylcholinesterase (68% identity). It is concluded that these proteins are members of a new supergene family

    Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use

    Get PDF
    © Author(s) 2018. Groundwater-dependent vegetation is globally distributed, having important ecological, social, and economic value. Along with the groundwater resources upon which it depends, this vegetation is under increasing threat through excessive rates of groundwater extraction. In this study we examined one shallow-rooted and two deep-rooted tree species at multiple sites along a naturally occurring gradient in depth-to-groundwater. We measured (i) stable isotope ratios of leaves (ÎŽ 13C), xylem, and groundwater (ÎŽ 2H and ÎŽ 18O); and (ii) leaf-vein density. We established that foliar discrimination of 13C (Δ13C) is a reliable indicator of groundwater use by vegetation and can also be used to estimate rooting depth. Through comparison with a continental-scale assessment of foliar Δ13C, we also estimated the upper limits to annual rates of groundwater use. We conclude that maximum rooting depth for both deep-rooted species ranged between 9.4 and 11.2 m and that annual rates of groundwater use ranged from ca. 1400 to 1700 mm for Eucalyptus camaldulensis and from 600 to 900 mm for Corymbia opaca. Several predictions about hydraulic and leaf traits arising from the conclusion that these two species made extensive use of groundwater were supported by additional independent studies of these species in central Australia

    Groundwater-dependent ecosystems: Recent insights from satellite and field-based studies

    Full text link
    © 2015 Author(s). Groundwater-dependent ecosystems (GDEs) are at risk globally due to unsustainable levels of groundwater extraction, especially in arid and semi-arid regions. In this review, we examine recent developments in the ecohydrology of GDEs with a focus on three knowledge gaps: (1) how do we locate GDEs, (2) how much water is transpired from shallow aquifers by GDEs and (3) what are the responses of GDEs to excessive groundwater extraction? The answers to these questions will determine water allocations that are required to sustain functioning of GDEs and to guide regulations on groundwater extraction to avoid negative impacts on GDEs. We discuss three methods for identifying GDEs: (1) techniques relying on remotely sensed information; (2) fluctuations in depth-to-groundwater that are associated with diurnal variations in transpiration; and (3) stable isotope analysis of water sources in the transpiration stream. We then discuss several methods for estimating rates of GW use, including direct measurement using sapflux or eddy covariance technologies, estimation of a climate wetness index within a Budyko framework, spatial distribution of evapotranspiration (ET) using remote sensing, groundwater modelling and stable isotopes. Remote sensing methods often rely on direct measurements to calibrate the relationship between vegetation indices and ET. ET from GDEs is also determined using hydrologic models of varying complexity, from the White method to fully coupled, variable saturation models. Combinations of methods are typically employed to obtain clearer insight into the components of groundwater discharge in GDEs, such as the proportional importance of transpiration versus evaporation (e.g. using stable isotopes) or from groundwater versus rainwater sources. Groundwater extraction can have severe consequences for the structure and function of GDEs. In the most extreme cases, phreatophytes experience crown dieback and death following groundwater drawdown.We provide a brief review of two case studies of the impacts of GW extraction and then provide an ecosystem-scale, multiple trait, integrated metric of the impact of differences in groundwater depth on the structure and function of eucalypt forests growing along a natural gradient in depth-to-groundwater. We conclude with a discussion of a depth-to-groundwater threshold in this mesic GDE. Beyond this threshold, significant changes occur in ecosystem structure and function

    Aerodynamic resistance and penman-monteith evapotranspiration over a seasonally two-layered canopy in semiarid central Australia

    Full text link
    Accurate prediction of evapotranspiration E depends upon representative characterization of meteorological conditions in the boundary layer. Drag and bulk transfer coefficient schemes for estimating aerodynamic resistance to vapor transfer were compared over a semiarid natural woodland ecosystem in central Australia. Aerodynamic resistance was overestimated from the drag coefficient, resulting in limited E at intermediate values of vapor pressure deficit. Large vertical humidity gradients were present during the summer, causing divergence between momentum and vapor transport within and above the canopy surface. Because of intermittency in growth of the summer-active, rain-dependent understory and physiological responses of the canopy, leaf resistance varied from less than 50sm-1 to greater than 106sm-1, in which the particularly large values were obtained from inversion of drag coefficient resistance. Soil moisture limitations further contributed to divergence between actual and reference E. Unsurprisingly, inclusion of site-specific meteorological (e.g., vertical humidity gradients) and hydrological (e.g., soil moisture content) information improved the accuracy of predicting E when applying Penman-Monteith analysis. These results apply regardless of canopy layering (i.e., even when the understory was not present) wherever atmospheric humidity gradients develop and are thus not restricted to two-layer canopies in semiarid regions. © 2013 American Meteorological Society

    Bowen Ratio Estimates of Evapotranspiration for Tamarix Ramosissima Stands on the Virgin River in Southern Nevada

    Get PDF
    A Bowen ratio energy balance was conducted over a Tamarix ramosissima (saltcedar) stand growing in a riparian corridor along the Virgin River in southern Nevada, Measurements in two separate years were compared and contrasted on the basis of changes in growing conditions. In 1994, a drought year, record high temperatures, dry winds, and a falling water table caused partial wilt of outer smaller twigs in the canopy of many trees in the stand around the Bowen tower. Subsequently, evapotranspiration (ET) estimates declined dramatically over a 60-day period (11 mm d(-1) to \u3c1 mm d(-1)). In 1995, the Virgin River at the Bowen tower area changed its course, hydrologically isolating the Tamarix stand in the vicinity of the tower. In 1996, a 25% canopy loss was visually estimated for the Tamarix growing in the area of the tower. Higher soil temperatures relative to air temperatures were recorded in 1996 in response to this loss in canopy, With a more open canopy, thermally induced turbulence was observed in 1996, On day 160 of 1996, a 28 degrees C rise over a 9-hour period was correlated with increased wind speeds of greater than 4 m s(-1). Subsequently, higher ET estimates were made in 1996 compared to 1994 (145 cm versus 75 cm), However, the energy balance was dominated by advection in 1996, with latent energy flux exceeding net radiation 65% of the measurement days compared to only 11% in 1994, We believe this advection was on a scale of the floodplain (hundreds of meters) as opposed to regional advection, since the majority of wind (90%) was in a N-S direction along the course of the river, and that a more open canopy allowed the horizontal transfer of energy into the Tamarix stand at the Bowen tower. Our results suggest that Tamarix has the potential to be both a low water user and a high water user, depending on moisture availability, canopy development, and atmospheric demand, and that advection can dominate energy balances and ET in aridland riparian zones such as the Virgin River

    Pronominalisation in Djamindjungan

    Get PDF

    How energy and water availability constrain vegetation water-use along the North Australian Tropical Transect

    Full text link
    © 2016, Gorgan Univ Agricultural Sciences and Natural Resources. All rights reserved. Energy and water availability were identified as the first order controls of evapotranspiration (ET) in ecohyrodrology. With a ~1,000 km precipitation gradient and distinct wet-dry climate, the North Australian Tropical Transect (NATT) was well suited for evaluating how energy and water availabilities constrain water use by vegetation, but has not been done yet. In this study, we addressed this question using Budyko framework that quantifies the evapotranspiration as a function of energy-limited rate and precipitation. Path analysis was adopted to evaluate the dependencies of water and carbon fluxes on ecohydrological variables. Results showed that the major drivers of water and carbon fluxes varied between wet and dry savannas: down-welling solar radiation was the primary driver of the wet season ET in mesic savanna ecosystems, while soil water availability was the primary driver in inland dryland ecosystems. Vegetation can significantly regulate water and carbon fluxes of savanna ecosystems, as supported by the strong link of LAI with ET and GPP from path analysis. Vegetation structure (i.e. the tree:grass ratio) at each site can regulate the impact of climatic constraint on ET and GPP. Sites with a low tree:grass ratio had ET and GPP that exceeded sites with high a tree:grass ratio when the grassy understory was active. Identifying the relative importance of these climate drivers and vegetation structure on seasonal patterns of water use by these ecosystems will help us decide our priorities when improving the estimates of ET and GPP

    Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater

    Full text link
    © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected]. Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites

    A multiple-trait analysis of ecohydrological acclimatisation in a dryland phreatophytic shrub

    Get PDF
    Water is the main limiting factor for groundwater-dependent ecosystems (GDEs) in drylands. Predicted climate change (precipitation reductions and temperature increases) and anthropogenic activities such as groundwater drawdown jeopardise the functioning of these ecosystems, presenting new challenges for their management. We developed a trait-based analysis to examine the spatiotemporal variability in the ecophysiology of Ziziphus lotus, a long-lived phreatophyte that dominates one of the few terrestrial GDEs of semiarid regions in Europe. We assessed morpho-functional traits and stem water potential along a naturally occurring gradient of depth-to-groundwater (DTGW, 2–25 m) in a coastal aquifer, and throughout the species-growing season. Increasing DTGW and salinity negatively affected photosynthetic and transpiration rates, increasing plant water stress (lower predawn and midday water potential), and positively affected Huber value (sapwood cross-sectional area per leaf area), reducing leaf area and likely, plant hydraulic demand. However, the species showed greater salt-tolerance at shallow depths. Despite groundwater characteristics, higher atmospheric evaporative demand in the study area, which occurred in summer, fostered higher transpiration rates and water stress, and promoted carbon assimilation and water loss more intensively at shallow water tables. This multiple-trait analysis allowed us to identify plant ecophysiological thresholds related to the increase in salinity, but mostly in DTGW (13 m), and in the evaporative demand during the growing season. These findings highlight the existence of tipping points in the functioning of a long-lived phreatophyte in drylands and can contribute to the sustainable management of GDEs in southern Europe, paving the way for further studies on phreatophytic species
    • 

    corecore