381 research outputs found

    Thermal/structural Tailoring of Engine Blades (T/STAEBL) User's Manual

    Get PDF
    The Thermal/Structural Tailoring of Engine Blades (T/STAEBL) system is a family of computer programs executed by a control program. The T/STAEBL system performs design optimizations of cooled, hollow turbine blades and vanes. This manual contains an overview of the system, fundamentals of the data block structure, and detailed descriptions of the inputs required by the optimizer. Additionally, the thermal analysis input requirements are described as well as the inputs required to perform a finite element blade vibrations analysis

    Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children

    Get PDF
    Sampling rate (Hz) of ActiGraph accelerometers may affect processing of acceleration to activity counts when using a hip-worn monitor, but research is needed to quantify if sampling rate affects actual acceleration (mg's), when using wrist-worn accelerometers and during non-locomotive activities. Objective: To assess the effect of ActiGraph sampling rate on total counts/15-sec and mean acceleration and to compare differences due to sampling rate between accelerometer wear locations and across different types of activities. Approach: Children (n=29) wore a hip- and wrist-worn accelerometer (sampled at 100 Hz, downsampled in MATLAB to 30 Hz) during rest/transition periods, active video games, and a treadmill test to volitional exhaustion. Mean acceleration and counts/15-sec were computed for each axis and as vector magnitude. Main Results: There were mostly no significant differences in mean acceleration. However, 100 Hz data resulted in significantly more total counts/15-sec (mean bias 4-43 counts/15-sec across axes) for both the hip- and wrist-worn monitor when compared to 30 Hz data. Absolute differences increased with activity intensity (hip: r=0.46-0.63; wrist: r=0.26-0.55) and were greater for hip- versus wrist-worn monitors. Percent agreement between 100 and 30 Hz data was high (97.4-99.7%) when cut-points or machine learning algorithms were used to classify activity intensity. Significance: Our findings support that sampling rate affects the generation of counts but adds that differences increase with intensity and when using hip-worn monitors. We recommend researchers be consistent and vigilantly report the sampling rate used, but note that classifying data into activity intensities resulted in agreement despite differences in sampling rate

    Development and Evaluation of a High Density Genotyping ‘Axiom_Arachis’ Array with 58 K SNPs for Accelerating Genetics and Breeding in Groundnut

    Get PDF
    Single nucleotide polymorphisms (SNPs) are the most abundant DNA sequence variation in the genomes which can be used to associate genotypic variation to the phenotype. Therefore, availability of a high-density SNP array with uniform genome coverage can advance genetic studies and breeding applications. Here we report the development of a high-density SNP array ‘Axiom_Arachis’ with 58 K SNPs and its utility in groundnut genetic diversity study. In this context, from a total of 163,782 SNPs derived from DNA resequencing and RNA-sequencing of 41 groundnut accessions and wild diploid ancestors, a total of 58,233 unique and informative SNPs were selected for developing the array. In addition to cultivated groundnuts (Arachis hypogaea), fair representation was kept for other diploids (A. duranensis, A. stenosperma, A. cardenasii, A. magna and A. batizocoi). Genotyping of the groundnut ‘Reference Set’ containing 300 genotypes identified 44,424 polymorphic SNPs and genetic diversity analysis provided in-depth insights into the genetic architecture of this material. The availability of the high-density SNP array ‘Axiom_Arachis’ with 58 K SNPs will accelerate the process of high resolution trait genetics and molecular breeding in cultivated groundnut

    A Humanized Pattern of Aromatase Expression is Associated with Mammary Hyperplasia in Mice

    Get PDF
    Aromatase is essential for estrogen production and is the target of aromatase inhibitors, the most effective endocrine treatment for postmenopausal breast cancer. Peripheral tissues in women, including the breast, express aromatase via alternative promoters. Female mice lack the promoters that drive aromatase expression in peripheral tissues; thus, we generated a transgenic humanized aromatase (Arom(hum)) mouse line containing a single copy of the human aromatase gene to study the link between aromatase expression in mammary adipose tissue and breast pathology. Arom(hum) mice expressed human aromatase, driven by the proximal human promoters II and I.3 and the distal promoter I.4, in breast adipose fibroblasts and myoepithelial cells. Estrogen levels in the breast tissue of Arom(hum) mice were higher than in wild-type mice, whereas circulating levels were similar. Arom(hum) mice exhibited accelerated mammary duct elongation at puberty and an increased incidence of lobuloalveolar breast hyperplasia associated with increased signal transducer and activator of transcription-5 phosphorylation at 24 and 64 wk. Hyperplastic epithelial cells showed remarkably increased proliferative activity. Thus, we demonstrated that the human aromatase gene can be expressed via its native promoters in a wide variety of mouse tissues and in a distribution pattern nearly identical to that of humans. Locally increased tissue levels, but not circulating levels, of estrogen appeared to exert hyperplastic effects on the mammary gland. This novel mouse model will be valuable for developing tissue-specific aromatase inhibition strategies

    BDNF Promoter–Mediated β-Galactosidase Expression in the Olfactory Epithelium and Bulb

    Get PDF
    The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the generation and differentiation of new olfactory sensory neurons (OSNs) and in the regulation of branching of OSN axons in their target glomeruli. However, previous reports of BDNF mRNA and protein expression in olfactory epithelium and olfactory bulb (OB) have been inconsistent, raising questions on the proposed roles for BDNF. Here, we report on β-galactosidase (β-gal) expression in adult gene-targeted mice where the BDNF promoter drives expression of the Escherichia coli lacZ gene (BDNFlacZneo mice). We find that β-gal is expressed in a small subset of OSNs with axons that reach the olfactory nerve layers throughout the OB. In the OB, we find expression of β-gal in γ-aminobutyric acidergic but not dopaminergic periglomerular cells and external tufted cells and in interneurons located in the mitral cell layer. Our results are inconsistent with the regulation of generation and differentiation of new OSNs elicited by the release of BDNF from horizontal basal cells. The results are consistent with a role for BDNF in competitive branching of OSN axons within the glomeruli of the OB

    Context-dependent effects on spatial variation in deer-vehicle collisions

    Get PDF
    Identifying factors that contribute to the risk of wildlife‐vehicle collisions (WVCs) has been a key focus of wildlife managers, transportation safety planners and road ecologists for over three decades. Despite these efforts, few generalities have emerged which can help predict the occurrence of WVCs, heightening the uncertainty under which conservation, wildlife and transportation management decisions are made. Undermining this general understanding is the use of study area boundaries that are incongruent with major biophysical gradients, inconsistent data collection protocols among study areas and species‐specific interactions with roads. We tested the extent to which factors predicting the occurrence of deer‐vehicle collisions (DVCs) were general among five study areas distributed over a 11,400‐km2 region in the Canadian Rocky Mountains. In spite of our system‐wide focus on the same genus (i.e., Odocoileus hemionus and O. virginianus), study area delineation along major biophysical gradients, and use of consistent data collection protocols, we found that large‐scale biophysical processes influence the effect of localized factors. At the local scale, factors predicting WVC occurrence varied greatly between individual study areas. Distance to water was an important predictor of WVCs in three of the five study areas, while other variables had modest importance in only two of the five study areas. Thus, lack of generality in factors predicting WVCs may have less to do with methodological or taxonomic differences among study areas than the large‐scale, biophysical context within which the data were collected. These results highlight the critical need to develop a conceptual framework in road ecology that can unify the disparate results emerging from field studies on WVC occurrence

    Genome‑wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection

    Get PDF
    Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut

    Perpetrating Cyber Dating Abuse: A Brief Report on the Role of Aggression, Romantic Jealousy and Gender

    Get PDF
    There is increasing evidence that the use of elec-tronic communication technology (ECT) is being integrated into romantic relationships, which can be used as a medium to control a romantic partner. Most research focuses on the vic-tims of cyber dating abuse, however, we focused on the factors that predict perpetration of cyber dating abuse. We explored whether aggression (verbal aggression, physical aggression, anger and hostility), romantic jealousy (emotional, cognitive and behavioral jealousy), and gender predicted perpetration of cyber dating abuse (n = 189). We found that hostility, behav-ioral jealousy and gender significantly predicted perpetration of cyber dating abuse. The findings of this study contribute to our understanding of the psychological factors that drive cyber dating abuse in romantic relationships

    A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea)

    Get PDF
    Tomato spotted wilt virus (TSWV) is a devastating disease to peanut growers in the South-eastern region of the United States. Newly released peanut cultivars in recent years are crucial as they have some levels of resistance to TSWV. One mapping population of recombinant inbred line (RIL) used in this study was derived from peanut lines of SunOleic 97R and NC94022. A whole genome re-sequencing approach was used to sequence these two parents and 140 RILs. A recombination bin-based genetic map was constructed, with 5,816 bins and 20 linkage groups covering a total length of 2004 cM. Using this map, we identified three QTLs which were colocalized on chromosome A01. One QTL had the largest effect of 36.51% to the phenotypic variation and encompassed 89.5 Kb genomic region. This genome region had a cluster of genes, which code for chitinases, strictosidine synthase-like, and NBS-LRR proteins. SNPs linked to this QTL were used to develop Kompetitive allele specific PCR (KASP) markers, and the validated KASP markers showed expected segregation of alleles coming from resistant and susceptible parents within the population. Therefore, this bin-map and QTL associated with TSWV resistance made it possible for functional gene mapping, map-based cloning, and marker-assisted breeding. This study identified the highest number of SNP makers and demonstrated recombination bin-based map for QTL identification in peanut. The chitinase gene clusters and NBS-LRR disease resistance genes in this region suggest the possible involvement in peanut resistance to TSWV
    corecore