1,904 research outputs found

    Design and characterization of a research electrohydraulic lithotripter patterned after the Dornier HM3

    Get PDF
    An electrohydraulic lithotripter has been designed that mimics the behavior of the Dornier HM3 extracorporeal shock wave lithotripter. The key mechanical and electrical properties of a clinical HM3 were measured and a design implemented to replicate these parameters. Three research lithotripters have been constructed on this design and are being used in a multi-institutional, multidisciplinary research program to determine the physical mechanisms of stone fragmentation and tissue damage in shock wave lithotripsy. The acoustic fields of the three research lithotripters and of two clinical Dornier HM3 lithotripters were measured with a PVDF membrane hydrophone. The peak positive pressure, peak negative pressure, pulse duration, and shock rise time of the focal waveforms were compared. Peak positive pressures varied from 25 MPa at a voltage setting of 12 kV to 40 MPa at 24 kV. The magnitude of the peak negative pressure varied from -7 to -12 MPa over the same voltage range. The spatial variations of the peak positive pressure and peak negative pressure were also compared. The focal region, as defined by the full width half maximum of the peak positive pressure, was 60 mm long in the axial direction and 10 mm wide in the lateral direction. The performance of the research lithotripters was found to be consistent at clinical firing rates (up to 3 Hz). The results indicated that pressure fields in the research lithotripters are equivalent to those generated by a clinical HM3 lithotripter

    Large Extra Dimensions, Sterile neutrinos and Solar Neutrino Data

    Full text link
    Solar, atmospheric and LSND neutrino oscillation results require a light sterile neutrino, νB\nu_B, which can exist in the bulk of extra dimensions. Solar νe\nu_e, confined to the brane, can oscillate in the vacuum to the zero mode of νB\nu_B and via successive MSW transitions to Kaluza-Klein states of νB\nu_B. This new way to fit solar data is provided by both low and intermediate string scale models. From average rates seen in the three types of solar experiments, the Super-Kamiokande spectrum is predicted with 73% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum.Comment: 4 pages, 2 figure

    A new fit to solar neutrino data in models with large extra dimensions

    Full text link
    String inspired models with millimeter scale extra dimensions provide a natural way to understand an ultralight sterile neutrino needed for a simultaneous explanation of the solar, atmospheric and LSND neutrino oscillation results. The sterile neutrino is the bulk neutrino (νB\nu_B) postulated to exist in these models, and it becomes ultralight in theories that prevent the appearance of its direct mass terms. Its Kaluza-Klein (KK) states then add new oscillation channels for the electron neutrino emitted from the solar core. We show that successive MSW transitions of solar νe\nu_e to the lower lying KK modes of νB\nu_B in conjunction with vacuum oscillations between the νe\nu_e and the zero mode of νB\nu_B provide a new way to fit the solar neutrino data. Using just the average rates from the three types of solar experiments, we predict the Super-Kamiokande spectrum with 73\% probability, but dips characteristic of the 0.06 mm extra dimension should be seen in the SNO spectrum. We discuss both intermediate and low string scale models where the desired phenomenology can emerge naturally.Comment: 20 pages, contains updated SuperK results and reference

    Measurement of the solar neutrino capture rate with gallium metal

    Get PDF
    The solar neutrino capture rate measured by the Russian-American Gallium Experiment (SAGE) on metallic gallium during the period January 1990 through December 1997 is 67.2 (+7.2-7.0) (+3.5-3.0) SNU, where the uncertainties are statistical and systematic, respectively. This represents only about half of the predicted Standard Solar Model rate of 129 SNU. All the experimental procedures, including extraction of germanium from gallium, counting of 71Ge, and data analysis are discussed in detail.Comment: 34 pages including 14 figures, Revtex, slightly shortene

    Metric tensor as the dynamical variable for variable cell-shape molecular dynamics

    Full text link
    We propose a new variable cell-shape molecular dynamics algorithm where the dynamical variables associated with the cell are the six independent dot products between the vectors defining the cell instead of the nine cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple scalar that is quadratic in the time derivatives of the metric tensor, makes the dynamics invariant with respect to the choice of the simulation cell edges. Choosing the densitary character of that scalar allows us to have a dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant external pressure and constant thermodynamic tension. We also show that using the metric as variable is convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-Jones parameters and for Si with forces and stresses calculated from first-principles of density functional theory to illustrate the applications of the method.Comment: 10 pages + 6 figures, Latex, to be published in Physical Review

    Localization of a 64-kDa phosphoprotein in the lumen between the outer and inner envelopes of pea chloroplasts

    Get PDF
    The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [Îł-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [Îł-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110000 Ă— g centrifugation

    Testing maximal electron and muon neutrino oscillations with sub-GeV SuperKamiokande atmospheric neutrino data

    Get PDF
    Motivated by the Exact Parity Model and other theories, the hypothesis that each of the known neutrinos oscillates maximally with a sterile partner has been put forward as an explanation of the atmospheric and solar neutrino anomalies. We provide detailed predictions for muon and electron flux ratios induced in the Kamiokande and SuperKamiokande detectors by sub-GeV atmospheric neutrinos. Several different, carefully chosen cuts on momentum and zenith angle are proposed, emphasizing the role of up-down flux asymmetries.Comment: LaTeX, 8 figures, 17 pages, version to appear in Phys. Rev. D Rapid Communication

    Cavitation in shock wave lithotripsy: the critical role of bubble activity in stone breakage and kidney trauma

    Get PDF
    Objective: Shock Wave Lithotripsy (SWL) is the use of shock waves to fragment kidney stones. We have undertaken a study of the physical mechanisms responsible for stone comminution and tissue injury in SWL. SWL was originally developed on the premise that stone fragmentation could be induced by a short duration, high amplitude positive pressure pulse. Even though the SWL waveform carries a prominent tensile component, it has long been thought that SW damage to stones could be explained entirely on the basis of mechanisms such as spallation, pressure gradients, and compressive fracture. We contend that not only is cavitation also involved in SWL, bubble activity plays a critical role in stone breakage and is a key mechanism in tissue damage. Methods: Our evidence is based upon a series of experiments in which we have suppressed or minimized cavitation, and discovered that both stone comminution and tissue injury is similarly suppressed or minimized. Some examples of these experiments are (1) application of overpressure, (2) time reversal of acoustic waveform, (3) acoustically-transparent, cavitation-absorbing films, and (4) dual pulses. In addition, using passive and active ultrasound, we have observed the existence of cavitation, in vivo, and at the site of tissue injury. Results: Numerical and experimental results showed mitigation of bubble collapse intensity by time-reversing the lithotripsy pulse and in vivo treatment showed a corresponding drop from 6.1% ± 1.7% to 0.0% in the hemorrhagic lesion. The time-reversed wave did not break stones. Stone comminution and hemolysis were reduced to levels very near sham levels with the application of hydrostatic pressure greater than the near 10-MPa amplitude of the negative pressure of the lithotripter shock wave. A Mylar sheet 3-mm from the stone surface did not inhibit erosion and internal cracking, but a sheet in contact with the stone did. In water, mass lost from stones in a dual pulse lithotripter is 8 times greater than with a single lithotripter, but in glycerol, which reduces the pressures generated in bubble implosion, the enhancement is lost. Conclusion: This cavitation-inclusive mechanistic understanding of SWL is gaining acceptance and has had clinical impact. Treatment at slower SW rate gives cavitation bubble clusters time to dissolve between pulses and increases comminution. Some SWL centers now treat patients at slower SW rate to take advantage of this effect. An elegant cavitation-aware strategy to reduce renal trauma in SWL is being tested in experimental animals. Starting treatment at low amplitude causes vessels to constrict and this interferes with cavitation-mediated vascular injury. Acceptance of the role of cavitation in SWL is beginning to be embraced by the lithotripter industry, as new dual-pulse lithotripters—based on the concept of cavitation control— have now been introduced

    \tau\to \mu \bar{\nu_i} \nu_i decay in the general two Higgs doublet model

    Full text link
    We study \tau\to \mu \bar{\nu_i} \nu_i, i=e,\mu,\tau decay in the model III version of the two Higgs doublet model. We calculated the BR at the order of the magnitude of 10^{-6}-10^{-4} for the intermediate values of the Yukawa couplings. Furthermore, we predict the upper limit of the coupling for the \tau-h^0 (A^0)-\tau transition as \sim 0.3 in the case that the BR is \sim 10^{-6}. We observe that the experimental result of the process under consideration can give comprehensive information about the physics beyond the standard model and the free parameters existing.Comment: 9 pages, 5 figure
    • …
    corecore