4,560 research outputs found
SNAP-8 third loop optimization
Eutectic sodium potassium and OS-124 considered as coolant fluids for SNAP-8 third loop - optimum loop operating parameter
Helicopter simulation validation using flight data
A joint NASA/Army effort to perform a systematic ground-based piloted simulation validation assessment is described. The best available mathematical model for the subject helicopter (UH-60A Black Hawk) was programmed for real-time operation. Flight data were obtained to validate the math model, and to develop models for the pilot control strategy while performing mission-type tasks. The validated math model is to be combined with motion and visual systems to perform ground based simulation. Comparisons of the control strategy obtained in flight with that obtained on the simulator are to be used as the basis for assessing the fidelity of the results obtained in the simulator
Microminiaturized, biopotential conditioning system (MBCS)
Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material
Krylov-Bogoliubov-Mitropolsky Averaging Used to Construct Effective Hamiltonians in the Theory of Strongly Correlated Electron Systems
We show that the Krylov-Bogoliubov-Mitropolsky averaging in the canonical
formulation can be used as a method for constructing effective Hamiltonians in
the theory of strongly correlated electron systems. As an example, we consider
the transition from the Hamiltonians of the Hubbard and Anderson models to the
respective Hamiltonians of the t-J and Kondo models. This is a very general
method, has several advantages over other methods, and can be used to solve a
wide range of problems in the physics of correlated systems.Comment: 9 page
Molecular dynamics simulations of lead clusters
Molecular dynamics simulations of nanometer-sized lead clusters have been
performed using the Lim, Ong and Ercolessi glue potential (Surf. Sci. {\bf
269/270}, 1109 (1992)). The binding energies of clusters forming crystalline
(fcc), decahedron and icosahedron structures are compared, showing that fcc
cuboctahedra are the most energetically favoured of these polyhedral model
structures. However, simulations of the freezing of liquid droplets produced a
characteristic form of ``shaved'' icosahedron, in which atoms are absent at the
edges and apexes of the polyhedron. This arrangement is energetically favoured
for 600-4000 atom clusters. Larger clusters favour crystalline structures.
Indeed, simulated freezing of a 6525-atom liquid droplet produced an imperfect
fcc Wulff particle, containing a number of parallel stacking faults. The
effects of temperature on the preferred structure of crystalline clusters below
the melting point have been considered. The implications of these results for
the interpretation of experimental data is discussed.Comment: 11 pages, 18 figues, new section added and one figure added, other
minor changes for publicatio
Entropic effects on the Size Evolution of Cluster Structure
We show that the vibrational entropy can play a crucial role in determining
the equilibrium structure of clusters by constructing structural phase diagrams
showing how the structure depends upon both size and temperature. These phase
diagrams are obtained for example rare gas and metal clusters.Comment: 5 pages, 3 figure
Kidney cell electrophoresis in space flight: Rationale, methods, results and flow cytometry applications
Cultures of human embryonic kidney cells consistently contain an electrophoretically separable subpopulation of cells that produce high levels of urokinase and have an electrophoretic mobility about 85 percent as high as that of the most mobile human embryonic kidney cells. This subpopulation is rich in large epithelioid cells that have relatively little internal structure. When resolution and throughput are adequate, free fluid electrophoresis can be used to isolate a broad band of low mobility cells which also produces high levels of plasminogen activators (PAs). In the course of performing this, it was discovered that all electrophoretic subpopulations of cultured human embryonic kidney cells produce some PAs and that separate subpopulations produce high quantities of different types of PA's. This information and the development of sensitive assays for this project have provided new insights into cell secretion mechanisms related to fibrinolysis. These advances would probably not have been made without the NASA program to explore fundamental questions of free fluid electrophoresis in space
Carbon Free Boston: Technical Summary
Part of a series of reports that includes:
Carbon Free Boston: Summary Report;
Carbon Free Boston: Social Equity Report;
Carbon Free Boston: Buildings Technical Report;
Carbon Free Boston: Transportation Technical Report;
Carbon Free Boston: Waste Technical Report;
Carbon Free Boston: Energy Technical Report;
Carbon Free Boston: Offsets Technical Report;
Available at http://sites.bu.edu/cfb/OVERVIEW:
This technical summary is intended to argument the rest of the Carbon Free Boston technical reports
that seek to achieve this goal of deep mitigation. This document provides below: a rationale for carbon
neutrality, a high level description of Carbon Free Boston’s analytical approach; a summary of crosssector strategies; a high level analysis of air quality impacts; and, a brief analysis of off-road and street
light emissions.Published versio
- …