555 research outputs found

    Dynamics of a nanomechanical resonator coupled to a superconducting single-electron transistor

    Get PDF
    We present an analysis of the dynamics of a nanomechanical resonator coupled to a superconducting single electron transistor (SSET) in the vicinity of the Josephson quasiparticle (JQP) and double Josephson quasiparticle (DJQP) resonances. For weak coupling and wide separation of dynamical timescales, we find that for either superconducting resonance the dynamics of the resonator is given by a Fokker-Planck equation, i.e., the SSET behaves effectively as an equilibrium heat bath, characterised by an effective temperature, which also damps the resonator and renormalizes its frequency. Depending on the gate and drain-source voltage bias points with respect to the superconducting resonance, the SSET can also give rise to an instability in the mechanical resonator marked by negative damping and temperature within the appropriate Fokker-Planck equation. Furthermore, sufficiently close to a resonance, we find that the Fokker-Planck description breaks down. We also point out that there is a close analogy between coupling a nanomechanical resonator to a SSET in the vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers

    Mechanically probing coherent tunnelling in a double quantum dot

    Full text link
    We study theoretically the interaction between the charge dynamics of a few-electron double quantum dot and a capacitively-coupled AFM cantilever, a setup realized in several recent experiments. We demonstrate that the dot-induced frequency shift and damping of the cantilever can be used as a sensitive probe of coherent inter-dot tunnelling, and that these effects can be used to quantitatively extract both the magnitude of the coherent interdot tunneling and (in some cases) the value of the double-dot T_1 time. We also show how the adiabatic modulation of the double-dot eigenstates by the cantilever motion leads to new effects compared to the single-dot case.Comment: 6 pages, 2 figure

    Observation and interpretation of motional sideband asymmetry in a quantum electro-mechanical device

    Get PDF
    Quantum electro-mechanical systems offer a unique opportunity to probe quantum noise properties in macroscopic devices, properties which ultimately stem from the Heisenberg Uncertainty Principle. A simple example of this is expected to occur in a microwave parametric transducer, where mechanical motion generates motional sidebands corresponding to the up and down frequency-conversion of microwave photons. Due to quantum vacuum noise, the rates of these processes are expected to be unequal. We measure this fundamental imbalance in a microwave transducer coupled to a radio-frequency mechanical mode, cooled near the ground state of motion. We also discuss the subtle origin of this imbalance: depending on the measurement scheme, the imbalance is most naturally attributed to the quantum fluctuations of either the mechanical mode or of the electromagnetic field

    Introduction to Quantum Noise, Measurement and Amplification

    Full text link
    The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, we describe the basics of weak continuous measurements. Particular attention is given to treating the standard quantum limit on linear amplifiers and position detectors using a general linear-response framework. We show how this approach relates to the standard Haus-Caves quantum limit for a bosonic amplifier known in quantum optics, and illustrate its application for the case of electrical circuits, including mesoscopic detectors and resonant cavity detectors.Comment: Substantial improvements over initial version; include supplemental appendices

    Optomechanical circuits for nanomechanical continuous variable quantum state processing

    Full text link
    We propose and analyze a nanomechanical architecture where light is used to perform linear quantum operations on a set of many vibrational modes. Suitable amplitude modulation of a single laser beam is shown to generate squeezing, entanglement, and state-transfer between modes that are selected according to their mechanical oscillation frequency. Current optomechanical devices based on photonic crystals may provide a platform for realizing this scheme.Comment: 11 pages, 5 figure

    Quantum squeezing of motion in a mechanical resonator

    Get PDF
    As a result of the quantum, wave-like nature of the physical world, a harmonic oscillator can never be completely at rest. Even in the quantum ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. In this work, using microwave frequency radiation pressure, we both prepare a micron-scale mechanical system in a state near the quantum ground state and then manipulate its thermal fluctuations to produce a stationary, quadrature-squeezed state. We deduce that the variance of one motional quadrature is 0.80 times the zero-point level, or 1 dB of sub-zero-point squeezing. This work is relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultra-sensitive sensing of force and motion
    corecore