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Abstract. We present an analysis of the dynamics of a nanomechanical
resonator coupled to a superconducting single-electron transistor (SSET) in
the vicinity of Josephson quasi-particle (JQP) and double Josephson quasi-
particle (DJQP) resonances. For weak coupling and wide separation of dynamical
timescales, we find that for either superconducting resonances the dynamics of
the resonator are given by a Fokker–Planck equation, i.e. the SSET behaves
effectively as an equilibrium heat bath, characterized by an effective temperature,
which also damps the resonator and renormalizes its frequency. Depending on
the gate and drain–source voltage bias points with respect to the superconducting
resonance, the SSET can also give rise to an instability in the mechanical resonator
marked by negative damping and temperature within the appropriate Fokker–
Planck equation. Furthermore, sufficiently close to a resonance, we find that the
Fokker–Planck description breaks down. We also point out that there is a close
analogy between coupling of a nanomechanical resonator to an SSET in the
vicinity of the JQP resonance and Doppler cooling of atoms by means of lasers.
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1. Introduction

Nanomechanical single-electron transistors (SETs), in which a mechanical resonator forms the
voltage gate of the transistor, constitute a new and interesting class of nanoelectromechanical
system. The idea of coupling a nanomechanical resonator to the island of an SET as a
mechanically compliant voltage gate was proposed as a way of measuring the displacement
of a mechanical resonator with high precision [1]–[4], since the conductance properties of the
SET are extremely sensitive to the resonator motion. Indeed such devices have recently been
used to measure the displacement of a nanomechanical resonator with almost quantum-limited
precision [5, 6].

The sensitivity with which an SET can be used to measure the position of a nanomechanical
resonator is ultimately limited by the back-action of the SET on the dynamics of the resonator.
The back-action of electrons moving through a normal state SET gated by a nanomechanical
resonator was studied recently [7]–[10] and it was shown that, in the regime where the energy
associated with the applied bias voltage is much larger than the resonator energy quanta, the
SET electrons act on the nanomechanical resonator in a way which is closely analogous to an
equilibrium thermal bath. In fact, the dynamics of the resonator can be described by a Fokker–
Planck equation for a damped harmonic oscillator in contact with a thermal bath at a fixed
temperature [10]. Very similar results were obtained explicitly for a resonator coupled to a
tunnel junction [11, 12] and it was also shown by Clerk [13] that such behaviour is expected to
be generic within the regime of linear response.

In contrast to normal state SETs, where the current arises solely from electron tunnelling
and cotunnelling processes [14], superconducting SETs (SSETs) can support a wide range of
different electronic processes which contribute to the current including tunnelling or cotunnelling
of quasi-particles, coherent tunnelling of Cooper pairs and even Andreev reflection [15]–[20].
Furthermore, there exist a number of current resonances for particular values of the drain–
source and gate voltages of the SSET, where current is carried by a combination of different
processes occurring at the source and drain junctions in turn. The best known (and most readily
observed experimentally) current resonances for the SSET are the Josephson quasi-particle (JQP)
and double Josephson quasi-particle (DJQP) cycles, where transport occurs via a combination
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of coherent, resonant tunnelling of Cooper pairs and incoherent quasi-particle tunnelling
[15]–[20].

In this paper, we analyse the back-action of an SSET on a nanomechanical resonator. In
particular, we investigate the dynamics of a resonator coupled as a voltage-gate to an SSET, which
is tuned in the vicinity of the JQP or the DJQP resonance. We find that for both resonances, the
resonator can act as though it were coupled to a thermal bath with its dynamics described by
a Fokker–Planck equation, as was found for the normal state SET. However, the magnitudes
of the effective temperature and damping of the resonator in the vicinity of the JQP and DJQP
resonances differ substantially, both from each other and from those for the normal state case.
A resonator coupled to a normal state SET has an effective temperature, which is proportional
to the drain–source voltage applied to the SET and is always damped. In contrast, the effective
temperature of a resonator coupled to an SSET in the vicinity of JQP or DJQP resonance is
largely controlled by how far the SSET is biased from the resonance, rather than the magnitude
of the drain–source voltage, and hence can easily be an order of magnitude smaller than the
effective temperature for an analogous normal state SET. Furthermore, as the applied gate and
drain–source voltages are adjusted to tune the SSET through a given JQP resonance, we find
that the Fokker–Planck description breaks down sufficiently close to the resonance; while further
from the resonance on the other side, the Fokker–Planck description is restored once again, but
with negative effective temperature and resonator damping constant, implying the possibility of
a dynamic instability. Very similar results for the SSET-resonator system have also been obtained
independently using a different approach by Clerk and Bennett [21].

The dynamics of a nanomechanical resonator coupled to an SSET in the vicinity of the JQP
resonance bears a striking resemblance to a number of other physical systems. In particular, the
behaviour of the effective temperature of the resonator in the vicinity of the JQP resonance takes
a very similar form to that of atoms undergoing Doppler cooling due to their interactions with
laser light [22, 23]. Indeed, the minimum effective temperature of both a resonator in the vicinity
of the JQP resonance and Doppler-cooled atoms are given by a decay rate: the quasi-particle
decay rate for the SSET-resonator system and the decay rate of the excited state for the atoms.

This paper is organized as follows. In section 2, we introduce a master equation describing
the coupled statistical dynamics of the SSET-resonator system in the vicinity of the JQP resonance
(a similar master equation for the SSET-resonator system in the vicinity of the DJQP resonance is
described in the appendix). We then show that the master equation can be well approximated by
a Fokker–Planck equation under conditions of weak coupling and wide separation of SSET and
oscillator dynamics timescales. In section 3, we present analytic and numerical calculations
of the SSET-induced damping, frequency renormalization and effective temperature in the
vicinity of the JQP and DJQP resonances. In section 4, we discuss our results and the analogy
between the SSET-resonator device and other physical systems, before we finally present our
conclusions.

2. Master equation description for the JQP resonance

In this section, we obtain a master equation for the SSET-resonator system in the vicinity of
the JQP resonance and show that the dynamics of the resonator can be described by a Fokker–
Planck equation. The same approach can also be used to derive analogous results for the DJQP
resonance, details of which are given in the appendix.
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Figure 1. Model circuit of the SSET-resonator system.

The model circuit that we consider is shown in figure 1. The SSET consists of a small
superconducting island and two superconducting leads, weakly linked to the island via tunnel
junctions with capacitances CJ ; a drain–source bias voltage Vds is applied to the leads. The
nanomechanical resonator is treated as a single-mode harmonic oscillator with frequency ω

and mass m. The metallized resonator is located adjacent the SSET island, forming a gate with
capacitance Cg(x), which depends on the resonator’s displacement x; a gate voltage Vg is applied
to the resonator. In the experiments of [5, 6], the coupling between the SSET island and the
resonator is typically very weak so that the displacement of the resonator from its equilibrium
position is much less than the separation d between that equilibrium position and the SSET island
itself. Hence, if we also assume a parallel-plate geometry for simplicity, the gate capacitance can
be approximated by [8]: Cg(x) = Cg(1 − x/d), implying linear coupling between the SSET and
the resonator [13].

The central island of the SSET is taken to be sufficiently small that its charging energy Ec =
e2/2(2CJ + Cg) ∼ � � kBT , where � is the superconducting gap and T the temperature of the
quasi-particles in the leads. Hence, the number of charge states accessible to the island is severely
restricted. The Josephson coupling between the leads and the island is EJ = h�/(8e2RJ) � Ec,
where RJ is the resistance of the junctions [19]. Depending on the exact value of the polarization
charge induced on the SSET island by the resonator gate, Ng = (CgVg + CJVds)/e, certain quasi-
particle and resonant Cooper-pair tunnelling processes can become energetically favourable
leading to a number of possible current-carrying regimes such as the JQP and DJQP cycles.
At sufficiently large drain–source voltages, and for relatively low-junction resistances, it is also
possible for current to flow via higher-order processes such as quasi-particle cotunnelling, but
we will neglect such effects in what follows.
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(b) DJQP Cycle

(a) JQP Cycle

Figure 2. Schematic illustration of the JQP and DJQP cycles. (a) For the JQP
cycle, Josephson tunnelling involving a Cooper pair occurs between drain and
island electrodes, increasing the island electron number N by 2, followed by
two, subsequent quasi-particle tunnel decay processes into the source electrode,
decreasing the electron island number by 2 [18]. (b) For the DJQP cycle,
Josephson tunnelling of a Cooper pair occurs at both junctions, with a Cooper-pair
tunnelling event through a given junction alternating in turn with a quasi-particle
tunnelling event at the opposite junction [19].

The details of the specific electronic processes which occur at the JQP and DJQP resonances
are illustrated schematically in figure 2. Close to the JQP resonance, Cooper pairs tunnel between
the right (with reference to the circuit in figure 1), drain electrode and island, while electron
quasi-particles tunnel out from the island to the left source electrode. Alternatively, Cooper-pair
tunnelling can occur between the left source electrode and island, while electron quasi-particles
tunnel in from the right-drain electrode to the island. Which of these two JQP cycles take place
depends on the gate and drain–source voltage biases. We shall consider biases such that only the
former cycle occurs (i.e. that illustrated in figure 2(a)).

We seek a master equation that describes the dynamics of the island charge state of the
SSET and the position–velocity state of the resonator’s centre-of-mass valid in the vicinity of
the JQP resonance. Master equations for the island charges in normal state and SSETs have
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been derived by a number of groups using essentially the same technique [14, 18]. Starting
with the full (time-dependent) Schrödinger equation for the system, one can trace over the
microscopic electronic degrees of freedom making use of a second-order Born approximation
(that treats the quasi-particle tunnelling rates between the island and the leads as a small expansion
parameter), followed by a long-time limit Markov approximation (that treats the response of the
electrons in the leads to a tunnelling event as being instantaneous), to arrive at a master equation
for a reduced density matrix represented in the basis of total number of electrons, N, on the
island. We generalize this approach to include the resonator. Again starting from a fully quantum
Hamiltonian, we follow the same procedure of the Born and Markov approximations and trace
over the microscopic degrees of freedom. However, we also assume that the resonator does not
evolve at all on the timescale of the quasi-particle tunnelling processes. Essentially this means
that we are treating the resonator as a classical oscillator.4 Finally, we take the Wigner transform
[24] of the resulting equations to obtain the desired master equation, which can be thought of as
providing a semiclassical description of the coupled dynamics [25].

For the JQP process (see figure 2(a)), the island electron number can be N, N + 1 or N + 2,
with the N and N + 2 number states linked by coherent Cooper-pair tunnelling. Hence, the
associated set of coupled semiclassical master equations has diagonal components ρN(x, v, t),
ρN+1(x, v, t) and ρN+2(x, v, t), and off-diagonal component ρN,N+2(x, v, t) = ρ∗

N+2,N(x, v, t),
where x and v are the position and velocity coordinates, respectively, of the oscillator. In
our semiclassical description, the sum ρN(x, v, t) + ρN+1(x, v, t) + ρN+2(x, v, t) is the probability
density PHO(x, v, t) of finding the oscillator at the point in phase space (x, v) at time t, while
the integral

∫
dx dv ρN(x, v, t) gives the probability PN(t) that the island electron number is N

at time t, with the probability conservation PN + PN+1 + PN+2 = 1. Explicitly, the semiclassical
master equations take the form

ρ̇N = ω2(x + Nxs)
∂ρN

∂v
− v

∂ρN

∂x
+ i

EJ

2 h̄
(ρN+2,N − ρN,N+2)

+ [�(EN+1,N) + �′(EN+1,N)mω2xsx] ρN+1,

ρ̇N+2 = ω2[x + (N + 2)xs]
∂ρN+2

∂v
− v

∂ρN+2

∂x
− i

EJ

2 h̄
(ρN+2,N − ρN,N+2)

− [�(EN+2,N+1) + �′(EN+2,N+1)mω2xsx] ρN+2,

ρ̇N+1 = ω2[x + (N + 1)xs]
∂ρN+1

∂v
− v

∂ρN+1

∂x
+ [�(EN+2,N+1) + �′(EN+2,N+1)mω2xsx] ρN+2

− [�(EN+1,N) + �′(EN+1,N)mω2xsx] ρN+1,

4 In deriving the quasi-particle tunnelling terms, we effectively treat the resonator as a classical oscillator by making
an adiabatic approximation, i.e. we assume that it does not move on the timescale of the tunnelling processes, an
approximation which was also used in [8]. The other terms in the master equations which arise from the coherent
evolution of the resonator and SSET charges are not affected by the adiabatic approximation. As we shall see later
on, the position dependence of the quasi-particle transition rates in fact do not play an important role in affecting
the resonator dynamics near the JQP resonance, so we expect our master equations to provide a description of the
resonator dynamics close to the JQP resonance, which is essentially the same as that which would be obtained from
a fully quantum derivation.
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ρ̇N,N+2 = ω2[x + (N + 1)xs]
∂ρN,N+2

∂v
− v

∂ρN,N+2

∂x
+ i

EJ

2 h̄
(ρN+2 − ρN)

+
i

h̄
(EN+2,N + 2mω2xsx)ρN,N+2 − 1

2 [�(EN+2,N+1) + �′(EN+2,N+1)mω2xsx] ρN,N+2,

(1)

where xs = 2EcCgVg/(emω2d), which is the distance between equilibrium positions of the
oscillator with N and N + 1 electrons on the island, parametrizing the strength of the electro-
mechanical coupling. The quasi-particle tunnel rates are given by [26]

�(E) = 1

e2RJ

∫ ∞

−∞
dε ρ(ε)ρ(ε + E)n(ε)[1 − n(ε + E)], (2)

where

ρ(ε) =
√

ε2

ε2 − �2
� (ε2 − �2) (3)

is the normalized quasi-particle density of states, with �(·) the stepfunction, and n(ε) =
1/(1 + exp(ε/kBT )). In the above master equations, the typical position coordinate is assumed
sufficiently small that the tunnel rates can be expanded to first order in the position coordinate,
with �′(E) = d�/dE. The quantities EN+2,N+1 and EN+1,N are the energies gained by an electron,
when it tunnels from island to source electrode, the island number changing from N + 2 to N + 1
and N + 1 to N, respectively. The quantity EN+2,N is the energy gained by a Cooper pair, when
it tunnels from island to drain electrode. These energies are as follows:

EN+2,N+1 = −2Ec(Ng − N − 3/2) + eVds,

EN+1,N = −2Ec(Ng − N − 1/2) + eVds,

EN+2,N = −4Ec(Ng − N − 1).

(4)

The JQP resonance condition is EN+2,N = 0, which is satisfied for Ng = N + 1. Furthermore, the
bias voltage must be sufficiently large for the quasi-particle processes to be allowed, enabling
the JQP cycle. For superconductors at zero temperature, this translates into the requirement that
eVds > 2� + Ec. Notice also that in the absence of the mechanical oscillator, we recover the
standard master equations for the SSET about the JQP resonance [18].

It is convenient to express the master equation in terms of dimensionless coordinates, since in
dimensionless form the essential parameters governing the dynamics are more clearly expressed.
Rewriting the time coordinate in units of the tunnelling time, τtunnel = eRJ/Vds, the position
coordinate in units of xs, and the velocity coordinate in units of xs/τtunnel, the master equations
take the form

ρ̇N = ε2
HO(x + N)

∂ρN

∂v
− v

∂ρN

∂x
+ iπεJ(ρN+2,N − ρN,N+2) + [�̃(ẼN+1,N) + �̃′(ẼN+1,N)κx] ρN+1,

ρ̇N+2 = ε2
HO[x + (N + 2)]

∂ρN+2

∂v
− v

∂ρN+2

∂x
− iπεJ(ρN+2,N − ρN,N+2)

− [�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx] ρN+2,
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ρ̇N+1 = ε2
HO[x + (N + 1)]

∂ρN+1

∂v
− v

∂ρN+1

∂x
+ [�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx] ρN+2

− [�̃(ẼN+1,N) + �̃′(ẼN+1,N)κx] ρN+1,

ρ̇N,N+2 = ε2
HO[x + (N + 1)]

∂ρN,N+2

∂v
− v

∂ρN,N+2

∂x
+ iπεJ(ρN+2 − ρN)

+ 2πir(ẼN+2,N + 2κx)ρN,N+2 − 1
2 [�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx] ρN,N+2. (5)

The definitions of the various dimensionless parameters are as follows: εHO = ωτtunnel is the
ratio of the SET quasi-particle tunnelling time to the oscillator period, εJ = τtunnel/τRabi =
(eRJ/Vds)(EJ/h) = �/(8eVds) is the ratio of the quasi-particle tunnelling time to the Cooper-
pair Rabi oscillation period, r = RJ/(h/e2) is the ratio of the tunnel junction resistance to the
quantum of resistance, and κ = mω2x2

s /(eVds) characterizes the coupling strength between the
oscillator and the SET. The dimensionless tunnelling rate is

�̃(Ẽ) =
∫ ∞

−∞
dε̃ ρ(ε̃)ρ(ε̃ + Ẽ)n(ε̃)[1 − n(ε̃ + Ẽ)], (6)

where now

ρ(ε̃) =
√

ε̃
2

ε̃
2 − �̃2

� (ε̃
2 − �̃2) (7)

and n(ε̃) = 1/(1 + exp(ε̃eVds/kBT)), with ε̃ = ε/(eVds), Ẽ = E/(eVds) and �̃ = �/(eVds).
Note that for typical nanomechanical SSETs [5, 6], we have εHO � εJ � 1, κ � 1 and r � 1.
Also, the dimensionless quasi-particle tunnel rates �̃, and their gradients �̃′, are generally of
order unity.

Our goal is to obtain a description of the dynamics of the resonator, decoupled from
the details of the electronic degrees of freedom. One very direct way to obtain the resonator
dynamics is to solve numerically the above master equation for the oscillator probability density
PHO(x, v, t). Another direction is to take advantage of the typical conditions of weak coupling
(κ � 1) and wide separation of timescales (εHO � 1) to derive from the above master equation a
much simpler, approximate effective equation for the oscillator probability density PHO(x, v, t)

(i.e. a reduced master equation for the oscillator alone) which can then be easily solved. We
have used both approaches. In the remainder of this section, we describe how the reduced master
equation is obtained and show that it is nothing other than the Fokker–Planck equation. Later
in section 3, we compare the results of this approach with direct numerical integrations of the
original set of master equations.

We begin our derivation of the reduced master equation of the resonator by rewriting
the full set of the master equations (5) in the following, concise 5 × 5 matrix operator
form:

Ṗ = (H0 + V)P, (8)
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http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where

P =




ρN+2(x, v, t)

ρN(x, v, t)

ρN+1(x, v, t)

ImρN,N+2(x, v, t)

ReρN,N+2(x, v, t)


 ,

H0 = (
ε2

HOx ∂

∂v
− v ∂

∂x

)
I +




−�N+2,N+1 0 0 −2πεJ 0
0 0 �N+1,N 2πεJ 0

�N+2,N+1 0 −�N+1,N 0 0

πεJ −πεJ 0 −�N+2,N+1

2
2πrEN+2,N

0 0 0 −2πrEN+2,N −�N+2,N+1

2




,

(9)

with I denoting the 5 × 5 identity matrix and we use the shorthand notation �(ẼN+2,N+1) ≡
�N+2,N+1 (we have dropped the tilde for convenience, understanding that all quantities are
in dimensionless form). The operator describing the interaction between the SET and oscillator
is V = V1 + V2 = κxU1 + ε2

HO∂/∂vU2, where

U1 =




−�′
N+2,N+1 0 0 0 0
0 0 �′

N+1,N 0 0
�′

N+2,N+1 0 −�′
N+1,N 0 0

0 0 0 −�′
N+2,N+1

2
4πr

0 0 0 −4πr −�′
N+2,N+1

2




(10)

and

U2 =




1 + �P 0 0 0 0
0 −1 + �P 0 0 0
0 0 �P 0 0
0 0 0 �P 0
0 0 0 0 �P


 , (11)

where we have used the shorthand notation�P = 〈PN〉 − 〈PN+2〉. Note that we have redefined the
position coordinate, such that its origin coincides with the steady-state value 〈x〉 = −(N + 1) +
〈PN〉 − 〈PN+2〉, where the steady-state island occupation probabilities are taken to be those for
the limit κ → 0,

〈PN+2〉 = (πεJ)
2

(�N+2,N+1/2)2 + (2πrEN+2,N)2 + (πεJ)2
(

2 + �N+2,N+1

�N+1,N

) ,

〈PN+1〉 = �N+2,N+1

�N+1,N

〈PN+2〉,

〈PN〉 = 1 − 〈PN+1〉 − 〈PN+2〉,

(12)

an approach which is valid for sufficiently weak coupling. The advantage of working with this
redefined position coordinate will become apparent shortly.
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Equation (8) resembles the time-dependent Schrödinger equation. The ‘Hamiltonian
operator’H0 gives the free, decoupled evolution of the independent oscillator and SSET systems,
while the operator V = V1 + V2 describes the interaction between the two systems with V1 giving
the dependence of the Cooper-pair and quasi-particle tunnelling rates on the oscillator position
and V2 giving the SSET island number dependence of the electrostatic force acting on the
oscillator.

Given the close resemblance of equation (8) to the Schrödinger equation, we can apply
approximation techniques developed for open quantum systems, in particular the self-consistent
Born approximation (SCBA), followed by the Markov approximation. Applying the SCBA as
described in section 3.1 of [27], assuming weak coupling between the oscillator and SSET, κ � 1,
we obtain the following approximate expression for the reduced master equation probability
distribution PHO(x, v, t) of the oscillator [10]:

ṖHO(x, v, t) = HHOPHO(x, v, t) + eHHOtTrSET[V(t)PSET(0)]e−HHOtPHO(x, v, t)

−
∫ t

0
dt′ eHHOtTrSET[V(t)PSET(0)]TrSET[V(t′)PSET(0)]e−HHOtPHO(x, v, t)

+
∫ t

0
dt′ eHHOtTrSET[V(t)V(t′)PSET(0)]e−HHOtPHO(x, v, t), (13)

where HHO = ε2x ∂

∂v
− v ∂

∂x
is the Hamiltonian operator for the free harmonic oscillator and

V(t) = e−H0tVe+H0t is in the interaction picture. The initial, t = 0 probability distribution is
taken to be a product state: P(0) = PHO(x, v, 0)PSET(0), where

PSET(0) =




PN+2(0)

PN(0)

PN+1(0)

ImPN,N+2(0)

RePN,N+2(0)


 .

Note that the above SCBA step which gives the oscillator master equation (13) and also
the Markov approximation applied below should not be confused with the Born–Markov
approximation described earlier in section 2, which gives the starting oscillator–SSET master
equation (1); these two approximation steps rely on distinct weak coupling and timescale
conditions.

The SCBA approach was applied to obtain a Fokker–Planck equation for a resonator coupled
to a normal state SET in [10] and our derivation for the SSET case follows the same route. We
can use a Markov approximation and evaluate the integrals in (13) for t → ∞, since typically
εHO � 1 and we are only interested in the oscillator dynamics on timescales of the order of the
mechanical period and longer, t � ε−1

HO. Furthermore, using the redefined position coordinate,
we find that the second and third terms on the right-hand-side of equation (13) drop out and we
eventually obtain

∂PHO

∂t
=

[
ε2

HOx
∂

∂v
− v

∂

∂x
+ κε2

HO

∂

∂v
(C21

1 x − C21
2 v) + ε4

HO

∂

∂v

(
C22

1

∂

∂v
+ C22

2

∂

∂x

)]
PHO, (14)
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where the C coefficients are defined as follows:

Cij

1 = lim
t→∞

∫ t

0
dτ Tr[Ui(t)Uj(t − τ)PSET(0)] (15)

and

Cij

2 = lim
t→∞

∫ t

0
dτ τTr[Ui(t)Uj(t − τ)PSET(0)]. (16)

In the Markovian limit, which we have used, these coefficients do not depend on the initial state
PSET(0) of the SET, just as we would expect. Furthermore, the ∂2P/∂v ∂x term in equation (14)
(called the ‘anomalous diffusion’ term in [27]) is of the order of εHO smaller than the diffusion
term, when time is expressed in units of the oscillator period; it should have only a small effect
on timescales of the order of mechanical period or longer. Re-expressing equation (14) in terms
of dimensionful coordinates and dropping the anomalous diffusion term, we obtain

∂PHO

∂t
=

(
ω2

Rx
∂

∂v
− v

∂

∂x
+ γSET

∂

∂v
v +

γSETkBTSET

m

∂2

∂v2

)
PHO, (17)

where the renormalized oscillator frequency is

ωR =
√

1 + κC21
1 ω, (18)

the damping rate is

γSET = −κεHOωC21
2 , (19)

and the effective SET temperature is

kBTSET = −eVds

C22
1

C21
2

. (20)

Equation (17), which has the form of a particular class of Fokker–Planck equation known
as the Klein–Kramers equation [28], describes the Brownian motion of a harmonic oscillator
interacting with a thermal bath. The oscillator experiences a net damping force, due to the
interaction with the SSET (the third term on the right-hand side of equation (17)), and an
accompanying Gaussian distributed thermal fluctuating force (the fourth term on the right-hand
side of (17), called the ‘diffusion’ term).

Note that our derivation of the Fokker–Planck equation (17) for the oscillator does not
in fact depend on the specifics of the SET interacting with it. As long as the original master
equation has the form Ṗ = (H0 + V)P with V = V1 + V2 = κxU1 + ε2

HO
∂

∂v
U2, where operators

U1(2) involve only the SET parameters, it then results in the same effective thermal bath description
(14) of the SET. The specifics of the SET enter in the dimensionless C coefficients defined in
equations (15) and (16). Thus, for the example of a normal state SET with island electron number
fluctuating between the values N and N + 1, the coefficients take the values C21

1 = C21
2 = −1 and

C22
1 = 〈PN〉〈PN+1〉 [8, 10]. Furthermore, the same approach can be applied to extract the relevant

resonator dynamics for the DJQP cycle (see section 3.3 and the appendix).
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3. Results

The coefficients Cij

1 and Cij

2 , given by equations (15) and (16), together with the Fokker–Planck
equation (14), describe the dynamics of a resonator coupled to an SSET. In this section we evaluate
equations (15) and (16) numerically to obtain the effective temperature, renormalized frequency
and damping of the resonator close to the JQP and DJQP resonances. In order to get a better
picture of the underlying physics, and also to understand the limitations of the SCBA approach,
we compare these numerical results for the JQP resonance with analytical approximations and
numerical results obtained by direct integration of the master equations (given by equation (5)).

We begin this section by presenting approximate analytical results derived for the JQP
resonance, as they provide a useful framework within which to understand the resonator
dynamics. We then present our numerical results for the JQP and DJQP resonances.

3.1. Analytical approximations for the JQP resonance

It is possible to derive analytical approximations to the C coefficients as series expansions in εJ .
Neglecting also the �′ terms in the interaction operator U1, since they are an order of magnitude
smaller than the 4πr terms in U1, we find the leading non-vanishing order in εJ :

C21
1 = − (4π2rεJ)

2EN+2,N(�N+2,N+1 + 2�N+1,N)

�N+1,N[(�N+2,N+1/2)2 + (2πrEN+2,N)2]2 , (21)

C21
2 = − (4π2rεJ)

2EN+2,N�N+2,N+1

�2
N+1,N[(�N+2,N+1/2)2 + (2πrEN+2,N)2]3

× [2�2
N+1,N + (�N+2,N+1/2)2 + �N+1,N�N+2,N+1 + (2πrEN+2,N)2], (22)

C22
1 = (πεJ)

2�N+2,N+1

�2
N+1,N[(�N+2,N+1/2)2 + (2πrEN+2,N)2]2

× [2�2
N+1,N + (�N+2,N+1/2)2 + �N+1,N�N+2,N+1 + (2πrEN+2,N)2]. (23)

The approximations to the renormalized frequency, damping rate and effective SET temperature
then follow by substituting (21), (22) and (23) into equations (18), (19) and (20). In particular,
for the SET temperature, we have:

kBTSET = −eVds

C22
1

C21
2

= h̄

4

�2
N+2,N+1 + 4(EN+2,N/ h̄)2

4(EN+2,N/ h̄)
, (24)

where�N+2,N+1 andEN+2,N are in their original, dimensional form (see equations (2) and (4)). Note
that TSET does not depend on εJ to leading order, while γSET and the frequency renormalization
are O(ε2

J).
Although these results are simple and intuitive, they are in principle only valid when

πεJ � 1, a condition which is by no means always satisfied for SSETs in practice.
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3.2. Numerical results for the JQP resonance

Two distinct sets of numerical calculations are carried out. We carry out integrations of the
original master equations and within the framework of the Born–Markov approximation (5), we
evaluate the expressions for the coefficients (equations (15) and (16)) numerically.

For the numerical integration of the master equations [8], we obtain the full evolution of
the resonator probability distribution (with initial state chosen to be Gaussian) from which we
determine the evolution of the average position (with respect to the fixed point value), 〈x(t)〉.
We then obtain values for ωR and γSET by fitting 〈x(t)〉 to the equation of motion of a damped
harmonic oscillator with a renormalized frequency. Finally, we use equations (18) and (19) to
infer values of the corresponding coefficients. In obtaining these results, we concentrate on the
typical experimentally accessible regime κ, ε � 1. As a consequence, the numerical integrations
take a prohibitively long time to reach a steady state and so we do not extract values of TSET from
the integrations.

Figures 3 and 4 show our numerical calculations of the coefficients C21
1 , C21

2 and TSET, with the
corresponding analytical approximations (21), (22) and (24) shown for comparison. Notice that
while the numerical results for C21

1 and C21
2 were obtained from numerical integrations of both the

master equations (without Born–Markov approximation) and from equations (15) and (16) (with
the Born–Markov approximation), the numerical results for TSET were only obtained using the
latter technique. In the numerics, values for the system parameters were chosen that are typical of
those found in current devices [5, 6]. In particular, the value of εJ = �/(8eVds) = 1/16 is kept
relatively small. This value corresponds to choosing eVds = 2�, the correct order of magnitude
to enable the JQP and DJQP cycles. Nevertheless, it is clear from figure 3 that our analytical
approximations differ substantially from the numerics in the vicinity of the resonance. In contrast,
figure 4 shows that there is excellent agreement between the analytical and numerical calculations
of TSET. It is not clear why the agreement is so good, but the most obvious explanation is that the
cancellation of the εJ -dependent terms that occurs in our approximate expression for the ratio
C22

1 /C21
2 must extend beyond second order in εJ .

Figure 5 shows schematically the Vds and Vg bias ranges in relation to the JQP resonance
lines for which the curves in figures 3 and 4 are obtained. Note that, because the quasi-
particle tunnel rates and their gradients have been approximated as constants equal to unity
for simplicity, the JQP curves in figures 3 and 4 do not depend on the Vds bias choice.
With the dependences of the tunnel rates on the energies EN+2,N+1 and EN+1,N properly taken
into account (see equations (2) and (3)), one finds that the maximum and minimum values
of the C21

1 and C21
2 curves increase in magnitude as Vds decreases towards the onset for the

JQP cycle at eVds = 2� + Ec. In contrast, as we shall see below, the DJQP curves depend
strongly on the Vds bias choice even when the quasi-particle tunnel rates are approximated as
constants.

The results obtained from the numerical integrations of the master equations agree well with
those obtained within the Born–Markov approximation. As expected, the agreement between the
two improves as the magnitude of κ is reduced, in accord with our use of the approximation
κ � 1 in deriving the reduced master equation.

In addition, the numerical integration of the master equations gives us one more piece
of information that we could not have obtained from our calculations within the Born–Markov
approximation. Very close to the resonance, we find that the evolution of 〈x(t)〉 no longer matches
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κ
κ
κ

κ
κ
κ

Figure 3. Comparison of numerical calculations of the coefficients C21
1 and C21

2
with the analytical approximations (equations (21) and (22)). The full curves come
from numerical evaluations of equations (15) and (16), whereas the points come
from numerical integrations of the master equations (5). For the numerics, we
choose εJ = 1/16, r = 1 and set the quasi-particle tunnel rates and their gradients
to unity. In addition, when integrating the master equations we set ε = 0.1 and
vary the value of κ as shown.
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Figure 4. Comparison of numerical calculations of TSET with the analytical
approximation, equation (24). The parameters are the same as those used for
figure 3.

Figure 5. Schematic map showing the location of a selection of neighbouring
JQP resonances (solid black lines) and DJQP resonances (solid black circles).
The bias ranges for the C21

1 , C21
2 and TSET plots are indicated by the solid red lines.
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Figure 6. Numerical calculations of the coefficients C21
1 and C21

2 in the vicinity
of the DJQP resonance. The different values of EC/eVds correspond to points at
different distances below, (a) and (c), and above, (b) and (d), the centre of the
DJQP resonance (see figure 5). As before, we choose εJ = 1/16, r = 1 and set
the quasi-particle tunnel rates and their gradients to unity.

that of a damped harmonic oscillator.5 Thus, it seems that very close to the resonance the action
of the SSET on the resonator is not analogous to a thermal bath. Although we have not carried
out a systematic investigation of the region in which deviations from thermal bath-like behaviour
occur, we do find that the width of the region (in terms of EN+2,N) broadens with increasing κ.
This suggests that the weak coupling (Born) approximation we use to derive the Fokker–Planck
equation may break down for mω2

0x
2
s � EN+2,N (i.e. κ � ẼN+2,N).

3.3. DJQP resonance

The coefficients C21
1 and C21

2 calculated within the Born–Markov approximation are shown in
figure 6, while the corresponding variation in TSET is shown in figure 7. To facilitate comparisons
with the JQP resonance, we have chosen ẼN+2,N and eVds/Ec as independent variables, in
terms of which the detuning of other energies is given by ẼN+1,N−1 = ẼN+2,N − 4(Ec/eVds) + 2.
The relation between the range of SET bias points covered in figures 6 and 7 are illustrated
schematically in figure 5.

5 The points plotted in figure 3 were all obtained from a fit to the behaviour of a damped harmonic oscillator. Close
to the resonance, where this fit is not readily obtained we were not able to extract values for γSET and hence no
corresponding data points are plotted for C21

2 .
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Figure 7. Numerical calculation of TSET (a) below and (b) above the DJQP
resonance. The parameters are the same as those used for figure 6.

The DJQP resonance is much more complex than the JQP one and our results by no means
cover the whole range of the relevant parameter space. However, by comparing figures 3 and 6,
it is clear that the magnitude of C21

2 , and hence γSET , is generally much larger for the DJQP
resonance than for the JQP one. As we shall discuss below, this implies that in an experiment
the effects of the back-action due to the SSET on the resonator dynamics will be stronger when
close to the DJQP resonance.

By analogy with the JQP resonance, it seems inevitable that there will be regions very close
to the DJQP resonances, where our Born–Markov approximation will fail to capture fully the
physics of the system. However, because of the additional complexity of the DJQP cycle, we
have not as yet performed the necessary numerical integrations of the master equations required
to determine exactly where and how the Born–Markov approach breaks down.
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4. Discussion and conclusions

We now turn to consider the implications of our results for experiments on nanomechanical–SET
systems and to explore the analogies which exist with other physical systems.

In an experiment, the overall state of the resonator would be determined by the combined
effects of the SSET and the external surroundings of the resonator other than the SSET, which
can be modelled by a damping rate, γe, and a temperature, Te. The overall effective temperature
and damping rate of the resonator would be given by the weighted averages [8],

γeffTeff = γSETTSET + γeTe, (25)

γeff = γSET + γe. (26)

From these relations, it is clear that when γSET becomes negative γeff will decrease, eventually
leading to a dynamic instability in the state of the resonator, when γeff � 0. However, we should
point out that the model described here is not sufficiently robust to explore precisely what would
happen in this regime.

The expressions for the effective temperature and damping rate also make clear that for
γSET � γe, the effective temperature of the resonator will be dominated by TSET. This has a
number of important implications given the minima in TSET, which develop close to the JQP
and DJQP resonances. For example, the minimum value of TSET which is simply proportional
to the quasi-particle decay rate can easily be as low as ∼100 mK, suggesting that the electronic
back-action on the resonator could be demonstrated in a dramatic way by using the SSET to cool
the resonator when Te > TSET. Indeed a close analogy can be made between the temperature of
a resonator coupled to an SSET and that of (two-level) atoms undergoing Doppler cooling due
to counter-propagating laser beams [22, 23].

In Doppler cooling, the interaction between laser beams and two of the atoms’energy levels
leads to an effective damping of the atomic translational motion. The atoms are cooled to a
temperature that depends on the detuning of the laser light from the atomic resonance,6 �, and
the decay rate of the excited atomic state, �e, given by the relation [23]

kBTDoppler = h̄

4

�2
e + 4�2

2�
. (27)

This equation has an almost identical form to that for TSET close to the JQP resonance
(equation (24)). It is interesting to note that a more direct analogy between Doppler cooling and
a system consisting of a resonator coupled to a Cooper pair box [29] addressed by an additional,
fixed voltage gate was suggested recently [30]. The effective temperature of the resonator in that
case takes exactly the same form as that near the JQP resonance when an appropriate ac-voltage is
applied to the extra fixed gate [30], although the relevant decay rate is not related to quasi-particle
tunnelling and the associated expression for the damping of the resonator takes a different form
to that considered here.

Another system that might be expected to have very similar dynamics to the SSET-resonator
system is that of a double quantum dot (DQD) gated by a mechanical resonator [31]. Since DQDs

6 Note we define the detuning, �, with the opposite sign to that given in [23].
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display an electronic resonance which is in many ways analogous to the JQP cycle, the dynamics
of a resonator coupled to a DQD should be very similar to that of one coupled to an SSET near
the JQP resonance. Experiments on DQD-resonator systems have not yet been performed, but
work on gating individual quantum dots by mechanical resonators [32] demonstrates that such
systems are certainly a feasible prospect.

Our work raises a number of interesting questions for future research. For example, in the
regime that we examined, the strongly nonlinear properties of the quasi-particle-tunnelling rates
played no role. It would be interesting to examine the dynamics of the resonator for parameters
close to the threshold for quasi-particle tunnelling, so that the motion of the resonator itself could
control whether or not tunnelling occurs. Also of interest is our finding that the self-consistent
Born–Markov approximation method apparently cannot capture the physics of the system when
it is tuned extremely close to the JQP resonance; this raises the intriguing possibility that the
resonator dynamics in this regime differs substantially from the thermalized dynamics described
here. Furthermore, we have not yet examined the conditions under which the Born–Markov
approximation breaks down for the DJQP resonance, although this is an area we plan to explore
in future work.

In conclusion, we have found that, like a normal state SET, an SSET in the vicinity of
either the JQP or DJQP resonance acts on a nanomechanical resonator like an equilibrium
thermal bath for sufficiently weak electro-mechanical coupling and for sufficiently large
separation between the electrical and mechanical timescales. However, the effective temperature,
damping and frequency shift of the resonator due to an SSET close to the JQP and DJQP
resonances take very different forms, both from each other and from the normal state SET.
In particular, the magnitude and even the sign of the effective temperature and damping for
the SSET depend very sensitively on where it is tuned with respect to either the JQP or DJQP
resonance.
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Appendix. Master equations for the DJQP resonance

In this appendix, we present the semiclassical master equations for the SSET-resonator system
in the vicinity of the DJQP resonance. As shown schematically in figure 2(b), the DJQP cycle
[19, 20, 33] involves resonant Cooper-pair tunnelling at each junction alternating in turn with
two quasi-particle tunnelling events.

The semiclassical master equations for the SSET resonator near the DJQP resonance are
derived using the same procedure as for the JQP resonance. In dimensionless notation, they take
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the form [33],

ρ̇N−1 = ε2
HO[x + (N − 1)]

∂ρN−1

∂v
− v

∂ρN−1

∂x
+ iπεJ(ρN+1,N−1 − ρN−1,N+1)

− [�̃(ẼN−1,N) + �̃′(ẼN−1,N)κx] ρN−1, (A.1)

ρ̇N = ε2
HO(x + N)

∂ρN

∂v
− v

∂ρN

∂x
+ iπεJ(ρN+2,N − ρN,N+2) + [�̃(ẼN−1,N) + �̃′(ẼN−1,N)κx] ρN−1,

(A.2)

ρ̇N+1 = ε2
HO[x + (N + 1)]

∂ρN+1

∂v
− v

∂ρN+1

∂x
− iπεJ(ρN+1,N−1 − ρN−1,N+1)

+ [�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx] ρN+2, (A.3)

ρ̇N+2 = ε2
HO[x + (N + 2)]

∂ρN+2

∂v
− v

∂ρN+2

∂x
− iπεJ(ρN+2,N − ρN,N+2)

− [�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx] ρN+2, (A.4)

ρ̇N−1,N+1 = ε2
HO(x + N)

∂ρN−1,N+1

∂v
− v

∂ρN−1,N+1

∂x
+ iπεJ(ρN+1 − ρN−1)

+ [2πir(ẼN+1,N−1 + 2κx) − 1
2(�̃(ẼN−1,N) + �̃′(ẼN−1,N)κx)] ρN−1,N+1, (A.5)

ρ̇N,N+2 = ε2
HO[x + (N + 1)]

∂ρN,N+2

∂v
− v

∂ρN,N+2

∂x
+ iπεJ(ρN+2 − ρN)

+ [2πir(ẼN+2,N + 2κx) − 1
2(�̃(ẼN+2,N+1) + �̃′(ẼN+2,N+1)κx)] ρN,N+2. (A.6)

The relevant energy differences for the quasi-particle and Cooper-pair tunnelling processes
involved in the DJQP cycle are given by

EN+2,N+1 = −2Ec(Ng − N − 3/2) + eVds, (A.7)

EN−1,N = 2Ec(Ng − N + 1/2), (A.8)

and

EN+2,N = −4Ec(Ng − N − 1), (A.9)

EN+1,N−1 = −4Ec(Ng − N) + 2eVds, (A.10)

respectively. The DJQP resonance occurs when EN+2,N = EN−1,N+1 = 0, i.e. when eVds = 2Ec

and Ng = N + 1. Notice that the cycle also requires that the quasi-particle-tunnelling processes
are not energetically forbidden, which implies that Ec > 2�/3, if we assume for simplicity that
the superconductors are at zero temperature.

These master equations give rise to a Fokker–Planck equation with the same form as
equation (14), but with different expressions for the coefficients C21

1 , C21
2 , C22

1 and C22
2 . These

coefficients can be calculated numerically, in the same way as those for the JQP resonance, to
give the results presented in section 3.3.
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