47 research outputs found

    Managing Deviating EQA Results:A Survey to Assess the Corrective and Preventive Actions of Medical Laboratories Testing for Oncological Biomarkers

    Get PDF
    Laboratories testing predictive biomarkers in lung and colorectal cancer are advised to participate in external quality assessment (EQA) schemes. This study aimed to investigate which corrective actions were taken by laboratories if predetermined performance criteria were not met, to ultimately improve current test practices. EQA participants from the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted, if they had at least one analysis error or test failure in the provided cases, to complete a survey. For 72.4% of 514 deviating EQA results, an appropriate action was performed, most often including staff training (15.2%) and protocol revisions (14.6%). Main assigned persons were the molecular biologist (40.0%) and pathologist (46.5%). A change in test method or the use of complex techniques, such as next-generation sequencing, required more training and the involvement of dedicated personnel to reduce future test failures. The majority of participants adhered to ISO 15189 and implemented suitable actions by designated staff, not limited to accredited laboratories. However, for 27.6% of cases (by 20 laboratories) no corrective action was taken, especially for pre-analytic problems and complex techniques. The surveys were feasible to request information on results follow-up and further recommendations were provided

    Causes behind error rates for predictive biomarker testing:the utility of sending post-EQA surveys

    Get PDF
    External quality assessment (EQA) schemes assess the performance of predictive biomarker testing in lung and colorectal cancer and have previously demonstrated variable error rates. No information is currently available on the underlying causes of incorrect EQA results in the laboratories. Participants in EQA schemes by the European Society of Pathology between 2014 and 2018 for lung and colorectal cancer were contacted to complete a survey if they had at least one analysis error or test failure in the provided cases. Of the 791 surveys that were sent, 325 were completed including data from 185 unique laboratories on 514 incorrectly analyzed or failed cases. For the digital cases and immunohistochemistry, the majority of errors were interpretation-related. For fluorescence in situ hybridization, problems with the EQA materials were reported frequently. For variant analysis, the causes were mainly methodological for lung cancer but variable for colorectal cancer. Post-analytical (clerical and interpretation) errors were more likely detected after release of the EQA results compared to pre-analytical and analytical issues. Accredited laboratories encountered fewer reagent problems and more often responded to the survey. A recent change in test methodology resulted in method-related problems. Testing more samples annually introduced personnel errors and lead to a lower performance in future schemes. Participation to quality improvement projects is important to reduce deviating test results in laboratories, as the different error causes differently affect the test performance. EQA providers could benefit from requesting root cause analyses behind errors to offer even more tailored feedback, subschemes, and cases

    Variation in nomenclature of somatic variants for selection of oncological therapies:Can we reach a consensus soon?

    Get PDF
    A standardized nomenclature for reporting oncology biomarker variants is key to avoid misinterpretation of results and unambiguous registration in clinical databases. External quality assessment (EQA) schemes have revealed a need for more consistent nomenclature use in clinical genetics. We evaluated the propensity of EQA for improvement of compliance with Human Genome Variation Society (HGVS) recommendations for reporting of predictive somatic variants in lung and colorectal cancer. Variant entries between 2012 and 2018 were collected from written reports and electronic results sheets. In total, 4,053 variants were assessed, of which 12.1% complied with HGVS recommendations. Compliance improved over time from 2.1% (2012) to 22.3% (2018), especially when laboratories participated in multiple EQA schemes. Compliance was better for next-generation sequencing (20.9%) compared with targeted techniques (9.8%). In the 1792 reports, HGVS recommendations for reference sequences were met for 31.9% of reports, for 36.0% of noncommercial, and 26.5% of commercial test methods. Compliance improved from 16.7% (2012) to 33.1% (2018), and after repeated EQA participation. EQA participation improves compliance with HGVS recommendations. The residual percentage of errors in the most recent schemes suggests that laboratories, companies, and EQA providers need to collaborate for additional improvement of harmonization in clinical test reporting

    PD-L1 immunohistochemistry in non-small-cell lung cancer:unraveling differences in staining concordance and interpretation

    Get PDF
    Programmed death ligand 1 (PD-L1) immunohistochemistry (IHC) is accepted as a predictive biomarker for the selection of immune checkpoint inhibitors. We evaluated the staining quality and estimation of the tumor proportion score (TPS) in non-small-cell lung cancer during two external quality assessment (EQA) schemes by the European Society of Pathology. Participants received two tissue micro-arrays with three (2017) and four (2018) cases for PD-L1 IHC and a positive tonsil control, for staining by their routine protocol. After the participants returned stained slides to the EQA coordination center, three pathologists assessed each slide and awarded an expert staining score from 1 to 5 points based on the staining concordance. Expert scores significantly (p <0.01) improved between EQA schemes from 3.8 (n = 67) to 4.3 (n = 74) on 5 points. Participants used 32 different protocols: the majority applied the 22C3 (56.7%) (Dako), SP263 (19.1%) (Ventana), and E1L3N (Cell Signaling) (7.1%) clones. Staining artifacts consisted mainly of very weak or weak antigen demonstration (63.0%) or excessive background staining (19.8%). Participants using CE-IVD kits reached a higher score compared with those using laboratory-developed tests (LDTs) (p <0.05), mainly attributed to a better concordance of SP263. The TPS was under- and over-estimated in 20/423 (4.7%) and 24/423 (5.7%) cases, respectively, correlating to a lower expert score. Additional research is needed on the concordance of less common protocols, and on reasons for lower LDT concordance. Laboratories should carefully validate all test methods and regularly verify their performance. EQA participation should focus on both staining concordance and interpretation of PD-L1 IHC

    External Quality Assessment Schemes for Biomarker Testing in Oncology:Comparison of Performance between Formalin-Fixed, Paraffin-Embedded-Tissue and Cell-Free Tumor DNA in Plasma

    Get PDF
    Liquid biopsies have emerged as a useful addition to tissue biopsies in molecular pathology. Literature has shown lower laboratory performances when a new method of variant analysis is introduced. This study evaluated the differences in variant analysis between tissue and plasma samples after the introduction of liquid biopsy in molecular analysis. Data from a pilot external quality assessment scheme for the detection of molecular variants in plasma samples and from external quality assessment schemes for the detection of molecular variants in tissue samples were collected. Laboratory performance and error rates by sample were compared between matrices for variants present in both scheme types. Results showed lower overall performance [65.6% (n = 276) versus 89.2% (n = 1607)] and higher error rates [21.0% to 43.5% (n = 138) versus 8.7% to 16.7% (n = 234 to 689)] for the detection of variants in plasma compared to tissue, respectively. In the plasma samples, performance was decreased for variants with an allele frequency of 1% compared to 5% [56.5% (n = 138) versus 74.6% (n = 138)]. The implementation of liquid biopsy in the detection of circulating tumor DNA in plasma was associated with poor laboratory performance. It is important both to apply optimal detection methods and to extensively validate new methods for testing circulating tumor DNA before treatment decisions are made

    IQN path ASBL report from the first European cfDNA consensus meeting:expert opinion on the minimal requirements for clinical ctDNA testing

    Get PDF
    Liquid biopsy testing is a new laboratory-based method that detects tumour mutations in circulating free DNA (cfDNA) derived from minimally invasive blood sampling techniques. Recognising the significance for clinical testing, in 2017, IQN Path provided external quality assessment for liquid biopsy testing. Representatives of those participating laboratories were invited to attend a workshop to discuss the findings and how to achieve quality implementation of cfDNA testing in the clinical setting, the discussion and outcomes of this consensus meeting are described below. Predictive molecular profiling using tumour tissue in order to select cancer patients eligible for targeted therapy is now routine in diagnostic pathology. If insufficient tumour tissue material is available, in some circumstances, recent European Medicines Agency (EMA) guidance recommends mutation testing with plasma cfDNA. Clinical applications of cfDNA include treatment selection based on clinically relevant mutations derived from pre-treatment samples and the detection of resistant mutations upon progression of the disease. In order to identify tumour-related mutations in amongst other nucleic acid material found in plasma samples, highly sensitive laboratory methods are needed. In the workshop, we discussed the variable approaches taken with regard to cfDNA extraction methods, the tests, and considered the impact of false-negative test results. We explored the lack of standardisation of complex testing procedures ranging from plasma collection, transport, processing and storage, cfDNA extraction, and mutation analysis, to interpretation and reporting of results. We will also address the current status of clinical validation and clinical utility, and its use in current diagnosis. This workshop revealed a need for guidelines on with standardised procedures for clinical cfDNA testing and reporting, and a requirement for cfDNA-based external quality assessment programs

    International pilot external quality assessment scheme for analysis and reporting of circulating tumour DNA

    Get PDF
    Background Molecular analysis of circulating tumour DNA (ctDNA) is becoming increasingly important in clinical treatment decisions. A pilot External Quality Assessment (EQA) scheme for ctDNA analysis was organized by four European EQA providers under the umbrella organization IQN Path, in order to investigate the feasibility of delivering an EQA to assess the detection of clinically relevant variants in plasma circulating cell-free DNA (cfDNA) and to analyze reporting formats. Methods Thirty-two experienced laboratories received 5 samples for EGFR mutation analysis and/or 5 samples for KRAS and NRAS mutation analysis. Samples were artificially manufactured to contain 3 mL of human plasma with 20 ng/mL of fragmented ctDNA and variants at allelic frequencies of 1 and 5%. Results The scheme error rate was 20.1%. Higher error rates were observed for RAS testing when compared to EGFR analysis, for allelic frequencies of 1% compared to 5%, and for cases including 2 different variants. The reports over-interpreted wild-type results and frequently failed to comment on the amount of cfDNA extracted. Conclusions The pilot scheme demonstrated the feasibility of delivering a ctDNA EQA scheme and the need for such a scheme due to high error rates in detecting low frequency clinically relevant variants. Recommendations to improve reporting of cfDNA are provided

    Sensitive detection methods are key to identify secondary EGFR c.2369C&gt;T p.(Thr790Met) in non-small cell lung cancer tissue samples

    Get PDF
    Background: Correct identification of the EGFR c.2369C>T p.(Thr790Met) variant is key to decide on a targeted therapeutic strategy for patients with acquired EGFR TKI resistance in non-small cell lung cancer. The aim of this study was to evaluate the correct detection of this variant in 12 tumor tissue specimens tested by 324 laboratories participating in External Quality Assessment (EQA) schemes. Methods: Data from EQA schemes were evaluated between 2013 and 2018 from cell lines (6) and resections (6) containing the EGFR c.2369C>T p.(Thr790Met) mutation. Adequate performance was defined as the percentage of tests for w

    Evaluation of a worldwide EQA scheme for complex clonality analysis of clinical lymphoproliferative cases demonstrates a learning effect.

    Get PDF
    Clonality analysis of immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements is routine practice to assist diagnosis of lymphoid malignancies. Participation in external quality assessment (EQA) aids laboratories in identifying systematic shortcomings. The aim of this study was to evaluate laboratories' improvement in IG/TR analysis and interpretation during five EQA rounds between 2014 and 2018. Each year, participants received a total of five cases for IG and five cases for TR testing. Paper-based cases were included for analysis of the final molecular conclusion that should be interpreted based on the integration of the individual PCR results. Wet cases were distributed for analysis of their routine protocol as well as evaluation of the final molecular conclusion. In total, 94.9% (506/533) of wet tests and 97.9% (829/847) of paper tests were correctly analyzed for IG, and 96.8% (507/524) wet tests and 93.2% (765/821) paper tests were correctly analyzed for TR. Analysis scores significantly improved when laboratories participated to more EQA rounds (p=0.001). Overall performance was significantly lower (p=0.008) for non-EuroClonality laboratories (95% for IG and 93% for TR) compared to EuroClonality laboratories (99% for IG and 97% for TR). The difference was not related to the EQA scheme year, anatomic origin of the sample, or final clinical diagnosis. This evaluation showed that repeated EQA participation helps to reduce performance differences between laboratories (EuroClonality versus non-EuroClonality) and between sample types (paper versus wet). The difficulties in interpreting oligoclonal cases highlighted the need for continued education by meetings and EQA schemes
    corecore