23 research outputs found

    Generalized exponential and logarithmic functions

    Get PDF
    AbstractGeneralizations of the exponential and logarithmic functions are defined and an investigation is made of two possible versions of these functions. Some applications are described, including computer arithmetic, properties of very large and very small numbers, and the determination of functional roots

    Chebyshev Solution of the Nearly-Singular One-Dimensional Helmholtz Equation and Related Singular Perturbation Equations: Multiple Scale Series and the Boundary Layer Rule-of-Thumb

    Full text link
    The one-dimensional Helmholtz equation, ε 2 u xx − u = f ( x ), arises in many applications, often as a component of three-dimensional fluids codes. Unfortunately, it is difficult to solve for ε≪1 because the homogeneous solutions are exp (± x /ε), which have boundary layers of thickness O(1/ε). By analyzing the asymptotic Chebyshev coefficients of exponentials, we rederive the Orszag–Israeli rule [16] that Chebyshev polynomials are needed to obtain an accuracy of 1% or better for the homogeneous solutions. (Interestingly, this is identical with the boundary layer rule-of-thumb in [5], which was derived for singular functions like tanh([ x −1]/ε).) Two strategies for small ε are described. The first is the method of multiple scales, which is very general, and applies to variable coefficient differential equations, too. The second, when f ( x ) is a polynomial, is to compute an exact particular integral of the Helmholtz equation as a polynomial of the same degree in the form of a Chebyshev series by solving triangular pentadiagonal systems. This can be combined with the analytic homogeneous solutions to synthesize the general solution. However, the multiple scales method is more efficient than the Chebyshev algorithm when ε is very, very tiny.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45436/1/11075_2004_Article_2865.pd

    Basic Methods for Computing Special Functions

    Get PDF
    This paper gives an overview of methods for the numerical evaluation of special functions, that is, the functions that arise in many problems from mathematical physics, engineering, probability theory, and other applied sciences. We consider in detail a selection of basic methods which are frequently used in the numerical evaluation of special functions: converging and asymptotic series, including Chebyshev expansions, linear recurrence relations, and numerical quadrature. Several other methods are available and some of these will be discussed in less detail. We give examples of recent software for special functions where these methods are used. We mention a list of new publications on computational aspects of special functions available on our website

    Strouhal number influence on flight effects on jet noise radiated from convecting quadrupoles

    No full text

    Laurent-Pade approximants to four kinds of Chebyshev polynomial expansion. Part 2. Clenshaw-Lord type approximants

    No full text
    Laurent–Padé (Chebyshev) rational approximants P m (w,w –1)/Q n (w,w –1) of Clenshaw–Lord type [2,1] are defined, such that the Laurent series of P m /Q n matches that of a given function f(w,w –1) up to terms of order w ±(m+n), based only on knowledge of the Laurent series coefficients of f up to terms in w ±(m+n). This contrasts with the Maehly-type approximants [4,5] defined and computed in part I of this paper [6], where the Laurent series of P m matches that of Q n f up to terms of order w ±(m+n), but based on knowledge of the series coefficients of f up to terms in w ±(m+2n). The Clenshaw–Lord method is here extended to be applicable to Chebyshev polynomials of the 1st, 2nd, 3rd and 4th kinds and corresponding rational approximants and Laurent series, and efficient systems of linear equations for the determination of the Padé–Chebyshev coefficients are obtained in each case. Using the Laurent approach of Gragg and Johnson [4], approximations are obtainable for all m0, n0. Numerical results are obtained for all four kinds of Chebyshev polynomials and Padé–Chebyshev approximants. Remarkably similar results of formidable accuracy are obtained by both Maehly-type and Clenshaw–Lord type methods, thus validating the use of either

    Laurent-Pade approximants to four kinds of Chebyshev polynomial expansion. Part 1. Maehly type approximants

    No full text
    Laurent Padé–Chebyshev rational approximants, A m (z,z –1)/B n (z,z –1), whose Laurent series expansions match that of a given function f(z,z –1) up to as high a degree in z,z –1 as possible, were introduced for first kind Chebyshev polynomials by Clenshaw and Lord [2] and, using Laurent series, by Gragg and Johnson [4]. Further real and complex extensions, based mainly on trigonometric expansions, were discussed by Chisholm and Common [1]. All of these methods require knowledge of Chebyshev coefficients of f up to degree m+n. Earlier, Maehly [5] introduced Padé approximants of the same form, which matched expansions between f(z,z –1)B n (z,z –1) and A m (z,z –1). The derivation was relatively simple but required knowledge of Chebyshev coefficients of f up to degree m+2n. In the present paper, Padé–Chebyshev approximants are developed not only to first, but also to second, third and fourth kind Chebyshev polynomial series, based throughout on Laurent series representations of the Maehly type. The procedures for developing the Padé–Chebyshev coefficients are similar to that for a traditional Padé approximant based on power series [8] but with essential modifications. By equating series coefficients and combining equations appropriately, a linear system of equations is successfully developed into two sub-systems, one for determining the denominator coefficients only and one for explicitly defining the numerator coefficients in terms of the denominator coefficients. In all cases, a type (m,n) Padé–Chebyshev approximant, of degree m in the numerator and n in the denominator, is matched to the Chebyshev series up to terms of degree m+n, based on knowledge of the Chebyshev coefficients up to degree m+2n. Numerical tests are carried out on all four Padé–Chebyshev approximants, and results are outstanding, with some formidable improvements being achieved over partial sums of Laurent–Chebyshev series on a variety of functions. In part II of this paper [7] Padé–Chebyshev approximants of Clenshaw–Lord type will be developed for the four kinds of Chebyshev series and compared with those of the Maehly type

    Effect of temperature on surface noise

    No full text
    corecore