5,736 research outputs found
Nuclear gas dynamics in Arp 220 - sub-kiloparsec scale atomic hydrogen disks
We present new, high angular resolution (~0.22") MERLIN observations of
neutral hydrogen (HI) absorption and 21-cm radio continuum emission across the
central ~900 parsecs of the ultraluminous infrared galaxy, Arp220. Spatially
resolved HI absorption is detected against the morphologically complex and
extended 21-cm radio continuum emission, consistent with two counterrotating
disks of neutral hydrogen, with a small bridge of gas connecting the two.
We propose a merger model in which the two nuclei represent the galaxy cores
which have survived the initial encounter and are now in the final stages of
merging, similar to conclusions drawn from previous CO studies (Sakamoto,
Scoville & Yun 1999). However, we suggest that instead of being coplanar with
the main CO disk (in which the eastern nucleus is embedded), the western
nucleus lies above it and, as suggested by bridge of HI connecting the two
nuclei, will soon complete its final merger with the main disk. We suggest that
the collection of radio supernovae (RSN) detected in VLBA studies in the more
compact western nucleus represent the second burst of star formation associated
with this final merger stage and that free-free absorption due to ionised gas
in the bulge-like component can account for the observed RSN distribution.
(Abridged)Comment: 26 pages including 8 figures and 1 table; accepted for publication in
Ap
Optical Imaging of Very Luminous Infrared Galaxy Systems: Photometric Properties and Late Evolution
A sample of 19 low redshift (0.03z0.07) very luminous infrared galaxy
(VLIRG: L[8-1000 m] ) systems (30
galaxies) has been imaged in , , and . These objects cover a
luminosity range that is key to linking the most luminous infrared galaxies
with the population of galaxies at large. We have obtained photometry for all
of these VLIRG systems, the individual galaxies (when detached), and their
nuclei, and the relative behavior of these classes has been studied in optical
color-magnitude diagrams. The photometric properties of the sample are also
compared with previously studied samples of ULIRGs. The mean observed
photometric properties of VLIRG and ULIRG samples, considered as a whole, are
indistinguishable at optical wavelengths. This suggests that not only ULIRG,
but also the more numerous population of VLIRGs, have similar rest-frame
optical photometric properties as the submillimeter galaxies (SMG), reinforcing
the connection between low-{\it z} LIRGs -- high-{\it z} SMGs. When the nuclei
of the {\it young} and {\it old} interacting systems are considered separately,
some differences between the VLIRG and the ULIRG samples are found. In
particular, the old VLIRGs are less luminous and redder than old ULIRG systems.
If confirmed with larger samples, this behavior suggests that the late-stage
evolution is different for VLIRGs and ULIRGs. Specifically, as suggested from
spectroscopic data, the present photometric observations support the idea that
the activity during the late phases of VLIRG evolution is dominated by
starbursts, while a higher proportion of ULIRGs could evolve into a QSO type of
object.Comment: 27 pages, 5 figures (degraded to reduce space). Figures 1 and 2 are
multiple page figures (i.e. Fig 1a,b and Fig2a-g
An Optimal Design for Universal Multiport Interferometers
Universal multiport interferometers, which can be programmed to implement any
linear transformation between multiple channels, are emerging as a powerful
tool for both classical and quantum photonics. These interferometers are
typically composed of a regular mesh of beam splitters and phase shifters,
allowing for straightforward fabrication using integrated photonic
architectures and ready scalability. The current, standard design for universal
multiport interferometers is based on work by Reck et al (Phys. Rev. Lett. 73,
58, 1994). We demonstrate a new design for universal multiport interferometers
based on an alternative arrangement of beam splitters and phase shifters, which
outperforms that by Reck et al. Our design occupies half the physical footprint
of the Reck design and is significantly more robust to optical losses.Comment: 8 pages, 4 figure
Gaussian Optical Ising Machines
It has recently been shown that optical parametric oscillator (OPO) Ising
machines, consisting of coupled optical pulses circulating in a cavity with
parametric gain, can be used to probabilistically find low-energy states of
Ising spin systems. In this work, we study optical Ising machines that operate
under simplified Gaussian dynamics. We show that these dynamics are sufficient
for reaching probabilities of success comparable to previous work. Based on
this result, we propose modified optical Ising machines with simpler designs
that do not use parametric gain yet achieve similar performance, thus
suggesting a route to building much larger systems.Comment: 6 page
Diffusion Monte Carlo study of two-dimensional liquid He
The ground-state properties of two-dimensional liquid He at zero
temperature are studied by means of a quadratic diffusion Monte Carlo method.
As interatomic potential we use a revised version of the HFDHE2 Aziz potential
which is expected to give a better description of the interaction between
helium atoms. The equation of state is determined with great accuracy over a
wide range of densities in the liquid phase from the spinodal point up to the
freezing density. The spinodal decomposition density is estimated and other
properties of the liquid, such as radial distribution function, static form
factor, momentum distribution and density dependence of the condensate fraction
are all presented.Comment: 19 pages, RevTex 3.0, 7 figures available upon reques
Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug
A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud
\ud
Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids
- …