18 research outputs found
The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance
The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
Pregnancy outcome in patients with pityriasis rosea
BACKGROUND: The effect of pityriasis rosea (PR) on the outcome of pregnancy has not been previously reported. OBJECTIVE: We sought to investigate the possible impact of PR in pregnant women. METHODS: In all, 38 women who developed PR during pregnancy were observed. In one of them, who developed PR at 10 weeks' gestation and aborted 2 weeks later, plasma, peripheral blood mononuclear cells, maternal skin, and placental and embryonic tissues were studied by quantitative calibrated real-time polymerase chain reaction for human herpesviruses (HHV)-6 and -7. Controls included plasma from 36 healthy blood donors, plasma and paraffin-embedded tissue sections from 12 patients with other dermatitides, and from placental and embryonic tissues from one woman who presented with a 19-week intrauterine fetal death. RESULTS: Of the 38 women, 9 had a premature delivery and 5 miscarried. In particular, 62% of the women who developed PR within 15 weeks' gestation aborted. Neonatal hypotonia, weak motility, and hyporeactivity were noted in 6 cases. In the patient studied in detail, HHV-6 DNA was detected in plasma, peripheral blood mononuclear cells, skin, and placenta and embryonic tissues, whereas HHV-7 DNA was absent. HHV-6 p41 antigen was detected by immunohistochemistry in skin lesions, placenta, and embryonic tissues. No herpesvirus DNA was detected in plasma and tissues from control subjects. LIMITATIONS: This is a case series study with a small number of patients. CONCLUSION: PR may be associated with an active HHV-6 infection. In pregnancy, PR may foreshadow premature delivery with neonatal hypotonia and even fetal demise especially if it develops within 15 weeks' gestation
Multiplex Human Papillomavirus L1L2 virus-like particle antibody binding assay.
A variety of in vitro techniques are available to estimate the level of antibodies present in human serum samples. Such tests are highly specific and are used to determine prior exposure to a pathogen or to estimate the magnitude, breadth and durability of individual and population level vaccine immunity. Multiplex (or multi-analyte) platforms are increasingly being used to evaluate immune responses against multiple antigens at the same time, usually at reduced per sample cost and a more efficient use of available samples. Consequently, multiplex serology is an essential component of a wide range of public health programmes. Human papillomavirus (HPV) serology is limited to a small number of academic, public health and vaccine manufacturer laboratories globally. Such platforms include indirect binding to the major (L1) capsid protein virus-like particles (VLP), monoclonal antibody competition against L1 VLP and indirect binding to L1 and L2 (minor capsid protein) VLP on multiplex (Luminex®, Meso Scale Discovery®) and standard (ELISA) platforms. The methodology described here utilizes a common multi-analyte platform and L1L2-based VLP expressed in house, which allows the simultaneous detection and quantification of antibody responses against nine vaccine-relevant HPV genotypes
HPV-based Cervical Cancer Screening on Self-samples in the Netherlands: Challenges to Reach Women and Test Performance Questions
In 2017, cervical cancer screening in the Netherlands switched from cytology to human papillomavirus (HPV) testing using the validated PCR-based cobas 4800. Women could order and subsequently received a free self-sampling kit (Evalyn Brush) at their home address instead of clinician sampling. In the laboratory, the shipped brush was placed into 20 mL of PreservCyt fluid, before testing. In the first 2 years of the new program, only 7% of screening tests were performed on a self-sample. Those who chose self-sampling versus clinician sampling were more likely to have never been screened previously and differed also with respect to sociodemographic factors. Subsequent more active promotion and increasing the ease to obtain kits increased the proportion opting for self-sampling (16% in 2020). HPV positivity and detection rate of precancer (CIN3+) were lower in the self-sampling compared with the clinician-sampling group (adjusted ORs of 0.65 and 0.86, respectively). Although population differences may partially explain these results, self-samples may have been too dilute, thereby reducing the analytic and clinical sensitivity. The Dutch findings demonstrate the importance of optimizing outreach, specimen handling and testing protocols for self-samples to effectively screen the target population and reach in particular the women at highest risk for cervical cancer. See related article by Aitken et al., p. 183
Prevalence of Human Papillomavirus (HPV) and Other Sexually Transmitted Infections (STIs) among Italian Women Referred for a Colposcopy
Sexually transmitted infections (STIs) represent a major cause of morbidity in women and men worldwide. Human Papillomavirus (HPV) infections are among the most prevalent STIs and persistent infections with high-risk HPV (hrHPV) genotypes can cause cervical dysplasia and invasive cervical cancer. The association of other STIs with HPV cervical infection and/or dysplasia has however not yet been fully elucidated. The aim of this study was to assess the prevalence of HPV and other STIs among women presenting with an abnormal cervical cytology. Cervical infections with 28 HPV genotypes and seven other sexually transmitted pathogens were evaluated in 177 women referred for a colposcopy after an abnormal Pap smear. Positivity for at least one hrHPV genotype was shown in 87% of women; HPV 16 was the most prevalent (25.0%), followed by HPV 31 and HPV 51. The overall positivity for other STIs was 49.2%, with Ureaplasma parvum being the most prevalent microrganism (39.0%). Co-infections between hrHPV and other STIs were demonstrated in 17.5% of women; no significant association was demonstrated between multiple infections and the colposcopy findings. This study provides new epidemiological data on the prevalence of cervical infections associated with HPV and seven other common sexually transmitted pathogens in a population of women presenting with an abnormal cervical cytology
Evaluation of an Environmental Transport Medium for Legionella pneumophila Recovery
The collection and storage of water-related matrices such as biofilm from collection to processing are critical for the detection of Legionella pneumophila by cultural and molecular tests. SRK™ is a liquid medium that acts both as an antimicrobial neutralizing agent and a transport medium for bacterial culture enumeration and is useful to maintain the stability of the sample from collection to analysis. The aims of this study were to evaluate Legionella pneumophila viability and bacterial nucleic acids’ stability in SRK™ medium over time at different storage conditions. Artificial bacterial inoculates with an approximate concentration of 104, 103 and 102 CFU/mL were made using Legionella pneumophila certified reference material suspended in SRK™ medium. Bacteria recovery was analyzed by cultural and molecular methods at time 0, 24 and 48 h at room temperature and at 0, 24, 48 and 72 h at 2–8 °C, respectively. SRK™ medium supported Legionella pneumophila culture viability with CFU counts within the expected range. The recovery after 72 h at 2–8 °C was 83–100% and 75–95% after 48 h at room temperature. Real-time PCR appropriately detected Legionella pneumophila DNA at each temperature condition, dilution and time point. Results demonstrated a good performance of SRK™ medium for the reliable recovery of environmental Legionella
Marine Fungi from the Sponge <i>Grantia compressa</i>: Biodiversity, Chemodiversity, and Biotechnological Potential
The emergence of antibiotic resistance and viruses with high epidemic potential made unexplored marine environments an appealing target source for new metabolites. Marine fungi represent one of the most suitable sources for the discovery of new compounds. Thus, the aim of this work was (i) to isolate and identify fungi associated with the Atlantic sponge Grantia compressa; (ii) to study the fungal metabolites by applying the OSMAC approach (one strain; many compounds); (iii) to test fungal compounds for their antimicrobial activities. Twenty-one fungal strains (17 taxa) were isolated from G. compressa. The OSMAC approach revealed an astonishing metabolic diversity in the marine fungus Eurotium chevalieri MUT 2316, from which 10 compounds were extracted, isolated, and characterized. All metabolites were tested against viruses and bacteria (reference and multidrug-resistant strains). Dihydroauroglaucin completely inhibited the replication of influenza A virus; as for herpes simplex virus 1, total inhibition of replication was observed for both physcion and neoechinulin D. Six out of 10 compounds were active against Gram-positive bacteria with isodihydroauroglaucin being the most promising compound (minimal inhibitory concentration (MIC) 4–64 µg/mL) with bactericidal activity. Overall, G. compressa proved to be an outstanding source of fungal diversity. Marine fungi were capable of producing different metabolites; in particular, the compounds isolated from E. chevalieri showed promising bioactivity against well-known and emerging pathogens
Preliminary Results of Feasibility and Acceptability of Self-Collection for Cervical Screening in Italian Women
Background: Given the diagnostic accuracy of HPV-DNA tests in terms of self-collected samples, in order to implement self-sampling in cervical screening programs, the standardization of the pre-analytical phase, including decisions concerning the choice of medium, the volume of elution, and storage conditions, are necessary, in addition to understanding the potential factors involved in acceptability by women. On this basis, we carried out a cross-sectional study to assess (i) the stability of dry vaginal self-collected samples stored at room temperature for up to 4 weeks after elution in 2 mL of eNat® (Copan) medium, and (ii) the acceptability of self-collection in enrolled women. Methods: 185 women were enrolled in the LILT (Italian League Against Tumors) regional project. A self-sampling kit, including a dry FLOQSwab® (Copan), instructions for use, and a satisfaction questionnaire, were supplied for each woman and sent by mail to the laboratory. The HPV-DNA test was carried out using the Anyplex™ II HPV HR (Seegene) kit. To evaluate the specimen’s stability, 185 dry vaginal swabs were eluted in eNat®, a lyses-based molecular medium and tested for HPV detection at two different time points (p ® devices eluted in 2 mL of molecular medium. The analysis of the questionnaire showed a high acceptability of self-collection among women, although a high percentage preferred standard collection devices. Overall, our preliminary results support the adoption of self-collection in screening programs, even though further analyses should be performed to optimize and standardize protocols for HPV tests on self-samples, and educational campaigns are needed to adequately inform and increase responsiveness in a target population
Evaluation of Pre-Analytical and Analytical Methods for Detecting SARS-CoV-2 in Municipal Wastewater Samples in Northern Italy
(1) Background: The surveillance of SARS-CoV-2 RNA in urban wastewaters allows one to monitor the presence of the virus in a population, including asymptomatic and symptomatic individuals, capturing the real circulation of this pathogen. The aim of this study was to evaluate the performance of different pre-analytical and analytical methods for identifying the presence of SARS-CoV-2 in untreated municipal wastewaters samples by conducting an inter-laboratory proficiency test. (2) Methods: three methods of concentration, namely, (A) Dextran and PEG-6000 two-phase separation, (B) PEG-8000 precipitation without a chloroform purification step and (C) PEG-8000 precipitation with a chloroform purification step were combined with three different protocols of RNA extraction by using commercial kits and were tested by using two primers/probe sets in three different master mixes. (3) Results: PEG-8000 precipitation without chloroform treatment showed the best performance in the SARS-CoV-2 recovery; no major differences were observed among the protocol of RNA extraction and the one-step real-time RT-PCR master mix kits. The highest analytic sensitivity was observed by using primers/probe sets targeting the N1/N3 fragments of SARS-CoV-2. (4) Conclusions: PEG-8000 precipitation in combination with real-time RT-PCR targeting the N gene (two fragments) was the best performing workflow for the detection of SARS-CoV-2 RNA in municipal wastewaters