14,833 research outputs found

    An analysis of airline landing flare data based on flight and training simulator measurements

    Get PDF
    Landings by experienced airline pilots transitioning to the DC-10, performed in flight and on a simulator, were analyzed and compared using a pilot-in-the-loop model of the landing maneuver. By solving for the effective feedback gains and pilot compensation which described landing technique, it was possible to discern fundamental differences in pilot behavior between the actual aircraft and the simulator. These differences were then used to infer simulator fidelity in terms of specific deficiencies and to quantify the effectiveness of training on the simulator as compared to training in flight. While training on the simulator, pilots exhibited larger effective lag in commanding the flare. The inability to compensate adequately for this lag was associated with hard or inconsistent landings. To some degree this deficiency was carried into flight, thus resulting in a slightly different and inferior landing technique than exhibited by pilots trained exclusively on the actual aircraft

    A theory of human error

    Get PDF
    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error

    Technical approaches for measurement of human errors

    Get PDF
    Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations

    Adaptive Filters Revisited - RFI Mitigation in pulsar observations

    Full text link
    Pulsar detection and timing experiments are applications where adaptive filters seem eminently suitable tools for radio-frequency-interference (RFI) mitigation. We describe a novel variant which works well in field trials of pulsar observations centred on an observing frequency of 675 MHz, a bandwidth of 64 MHz and with 2-bit sampling. Adaptive filters have generally received bad press for RFI mitigation in radio astronomical observations with their most serious drawback being a spectral echo of the RFI embedded in the filtered signals. Pulsar observations are intrinsically less sensitive to this as they operate in the (pulsar period) time domain. The field trials have allowed us to identify those issues which limit the effectiveness of the adaptive filter. We conclude that adaptive filters can significantly improve pulsar observations in the presence of RFI.Comment: Accepted for publication in Radio Scienc

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Functional requirements for the man-vehicle systems research facility

    Get PDF
    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included

    Forward projection of transient signals obtained from a fiber-optic pressure sensor

    Get PDF
    An analytical/experimental approach is presented to reconstruct the space–time pressure field in a plane and forward project the resultant space–time pressure field using tomographic and wave vector time-domain methods. Transient pressure signals from an underwater ultrasonic planar transducer are first measured using a line fiber-optic pressure sensor which is scanned across a plane at a fixed distance z0 from the transducer. The resulting spatial line integrals in the plane are time-dependent signals which are first used to reconstruct the space–time pressure field in the plane via simply implemented tomographic methods. These signals are then used to forward project the space–time pressure field to arbitrary planes employing a wave vector time-domain method. Verification of the method is first presented using synthetic signals and the impulse response approach. An experimental verification of the approach is then presented using an ultrasonic planar transducer. The results of the projected and experimental fields are compared at various distances for synthetic signals and experimental data. Good correlation is found between the calculated, projected, and experimental data

    The beta-spectra of P-32 and P-33

    Get PDF
    The beta-spectrum of P-32 has been examined with a thin-lens spectrometer. The maximum energy of the 14.3-day beta activity, as determined from several Kurie plots, was found to be 1.704 +/- 0.008 Mev. The Kurie plots gave excellent straight lines from the maximum beta-energy to about 0.26 Mev. In phosphorus samples prepared from neutron irradiated sulfur an additional beta-activity was observed having a maximum energy of 0.26 +/- 0.02 Mev and a half-life of 24.8 +/- 0.5 days. This low-energy beta-group was also observed in phosphorus samples prepared from sulfur and lithium chloride irradiated with X-rays having a maximum energy of 68 Mev. The low-energy beta-group was not observed in phosphorus samples prepared from sulfur irradiated with deuterons or phosphorus irradiated with neutrons . The low-energy beta-group is ascribed to P-33

    Mission-oriented requirements for updating MIL-H-8501. Volume 1: STI proposed structure

    Get PDF
    The structure of a new flying and ground handling qualities specification for military rotorcraft is presented. This preliminary specification structure is intended to evolve into a replacement for specification MIL-H-8501A. The new structure is designed to accommodate a variety of rotorcraft types, mission flight phases, flight envelopes, and flight environmental characteristics and to provide criteria for three levels of flying qualities, a systematic treatment of failures and reliability, both conventional and multiaxis controllers, and external vision aids which may also incorporate synthetic display content. Existing and new criteria were incorporated into the new structure wherever they could be substantiated
    • …
    corecore