13,927 research outputs found

    Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer

    Get PDF
    International audienceWe report velocity and temperature spectra measured at nine levels from 1.42 meters up to 25.7 m over a smooth playa in Western Utah. Data are from highly convective conditions when the magnitude of the Obukhov length (our proxy for the depth of the surface friction layer) was less than 2 m. Our results are somewhat similar to the results reported from the Minnesota experiment of Kaimal et al. (1976), but show significant differences in detail. Our velocity spectra show no evidence of buoyant production of kinetic energy at at the scale of the thermal structures. We interpret our velocity spectra to be the result of outer eddies interacting with the ground, not "local free convection". We observe that velocity spectra represent the spectral distribution of the kinetic energy of the turbulence, so we use energy scales based on total turbulence energy in the convective boundary layer (CBL) to collapse our spectra. For the horizontal velocity spectra this scale is (zi ?o)2/3, where zi is inversion height and ?o is the dissipation rate in the bulk CBL. This scale functionally replaces the Deardorff convective velocity scale. Vertical motions are blocked by the ground, so the outer eddies most effective in creating vertical motions come from the inertial subrange of the outer turbulence. We deduce that the appropriate scale for the peak region of the vertical velocity spectra is (z ?o)2/3 where z is height above ground. Deviations from perfect spectral collapse under these scalings at large and small wavenumbers are explained in terms of the energy transport and the eddy structures of the flow. We find that the peaks of the temperature spectra collapse when wavenumbers are scaled using (z1/2 zi1/2). That is, the lengths of the thermal structures depend on both the lengths of the transporting eddies, ~9z, and the progressive aggregation of the plumes with height into the larger-scale structures of the CBL. This aggregation depends, in top-down fashion, on zi. The whole system is therefore highly organized, with even the smallest structures conforming to the overall requirements of the whole flow

    Success Factors for New Generation Cooperatives

    Get PDF
    The goal of this research was to determine success factors for New Generation Cooperatives (NGCs). A self-explicated approach was used to assess the importance of various factors grouped in broad categories using data collected from a mailout survey of NGC managers. Results suggest that factors in the "Planning and Development" and "Financing and Costs" categories are considered to be critically important by NGC managers, though differences in factor rankings exist between managers of enterprises involved in the processing of different commodities.New Generation Cooperative, self-explication, Agribusiness,

    SUCCESS FACTORS FOR VALUE ADDED NEW GENERATION COOPERATIVES

    Get PDF
    Two surveys of New Generation Cooperative (NGC) managers were carried out to ascertain the factors most important to their success. Factors in the Planning and Development as well as the Financing and Cost categories were most important, and NGCs with more employees and more members' equity are most successful.Agribusiness,

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    An Exact Solution for Static Scalar Fields Coupled to Gravity in (2+1)(2+1)-Dimensions

    Full text link
    We obtain an exact solution for the Einstein's equations with cosmological constant coupled to a scalar, static particle in static, "spherically" symmetric background in 2+1 dimensions.Comment: 9 pages. Replaced by a revised versio

    Adaptive Filters Revisited - RFI Mitigation in pulsar observations

    Full text link
    Pulsar detection and timing experiments are applications where adaptive filters seem eminently suitable tools for radio-frequency-interference (RFI) mitigation. We describe a novel variant which works well in field trials of pulsar observations centred on an observing frequency of 675 MHz, a bandwidth of 64 MHz and with 2-bit sampling. Adaptive filters have generally received bad press for RFI mitigation in radio astronomical observations with their most serious drawback being a spectral echo of the RFI embedded in the filtered signals. Pulsar observations are intrinsically less sensitive to this as they operate in the (pulsar period) time domain. The field trials have allowed us to identify those issues which limit the effectiveness of the adaptive filter. We conclude that adaptive filters can significantly improve pulsar observations in the presence of RFI.Comment: Accepted for publication in Radio Scienc

    Charged Black Cosmic String

    Get PDF
    Global U(1) strings with cylindrical symmetry are studied in anti-de Sitter spacetime. According as the magnitude of negative cosmological constant, they form regular global cosmic strings, extremal black cosmic strings and charged black cosmic strings, but no curvature singularity is involved. The relationship between the topological charge of a neutral global string and the black hole charge is clarified by duality transformation. Physical relevance as straight string is briefly discussed.Comment: ll pages, LaTe

    Generalized Massive Gravity and Galilean Conformal Algebra in two dimensions

    Full text link
    Galilean conformal algebra (GCA) in two dimensions arises as contraction of two copies of the centrally extended Virasoro algebra (tt,xϵxt\rightarrow t, x\rightarrow\epsilon x with ϵ0\epsilon\rightarrow 0). The central charges of GCA can be expressed in term of Virasoro central charges. For finite and non-zero GCA central charges, the Virasoro central charges must behave as asymmetric form O(1)±O(1ϵ)O(1)\pm O(\frac{1}{\epsilon}). We propose that, the bulk description for 2d GCA with asymmetric central charges is given by general massive gravity (GMG) in three dimensions. It can be seen that, if the gravitational Chern-Simons coupling 1μ\frac{1}{\mu} behaves as of order O(1ϵ\frac{1}{\epsilon}) or (μϵμ\mu\rightarrow\epsilon\mu), the central charges of GMG have the above ϵ\epsilon dependence. So, in non-relativistic scaling limit μϵμ\mu\rightarrow\epsilon\mu, we calculated GCA parameters and finite entropy in term of gravity parameters mass and angular momentum of GMG.Comment: 9 page
    corecore