16,090 research outputs found

    Saffman-Taylor instability in a non-Brownian suspension: finger selection and destabilization

    Full text link
    We study the Saffman-Taylor instability in a non-Brownian suspension by injection of air. We find that flow structuration in the Hele-Shaw cell can be described by an effective viscosity depending on the volume fraction. When this viscosity is used to define the control parameter of the instability, the classical finger selection for Newtonian fluids is recovered. However, this picture breaks down when the cell thickness is decreased below approximatively 10 grain sizes. The discrete nature of the grains plays also a determinant role in the the early destabilization of the fingers observed. The grains produce a perturbation at the interface proportional to the grain size and can thus be considered as a "controlled noise". The finite amplitude instability mechanism proposed earlier by Bensimon et al. allows to link this perturbation to the actual values of the destabilization threshold.Comment: 4 pages, 4 figures, submitted to PR

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Observing the evaporation transition in vibro-fluidized granular matter

    Full text link
    By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a cooperative way which is far away from a Brownian description. In a previous work we have shown that the key element to describe the statistics of this behavior is the exclusion of volume principle, whereby the system obeys a Fermi configurational approach. Even though the experiment involves an archetypal non-equilibrium system, we succeeded in defining a global temperature, as the quantity associated to the Lagrange parameter in a maximum entropic statistical description. In fact in order to close our approach we had to generalize the equipartition theorem for dissipative systems. Therefore we postulated, found and measured a fundamental dissipative parameter, written in terms of pumping and gravitational energies, linking the configurational entropy to the collective response for the expansion of the centre of mass (c.m.) of the granular bed. Here we present a kinetic approach to describe the experimental velocity distribution function (VDF) of this non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation transition occurs mainly by jumping balls governed by the excluded volume principle. Surprisingly in the whole range of low temperatures that we measured this description reveals a lattice-gas, leading to a packing factor, which is independent of the external parameters. In addition we measure the mean free path, as a function of the driving frequency, and corroborate our prediction from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200

    Bounds on the force between black holes

    Full text link
    We treat the problem of N interacting, axisymmetric black holes and obtain two relations among physical parameters of the system including the force between the black holes. The first relation involves the total mass, the angular momenta, the distances and the forces between the black holes. The second one relates the angular momentum and area of each black hole with the forces acting on it.Comment: 13 pages, no figure

    Force indeterminacy in the jammed state of hard disks

    Full text link
    Granular packings of hard discs are investigated by means of contact dynamics which is an appropriate technique to explore the allowed force-realizations in the space of contact forces. Configurations are generated for given values of the friction coefficient, and then an ensemble of equilibrium forces is found for fixed contacts. We study the force fluctuations within this ensemble. In the limit of zero friction the fluctuations vanish in accordance with the isostaticity of the packing. The magnitude of the fluctuations has a non-monotonous friction dependence. The increase for small friction can be attributed to the opening of the angle of the Coulomb cone, while the decrease as friction increases is due to the reduction of connectivity of the contact-network, leading to local, independent clusters of indeterminacy. We discuss the relevance of indeterminacy to packings of deformable particles and to the mechanical response properties.Comment: 4 pages, 3 figures. Minor changes, journal reference adde

    Soft singularity and the fundamental length

    Full text link
    It is shown that some regular solutions in 5D Kaluza-Klein gravity may have interesting properties if one from the parameters is in the Planck region. In this case the Kretschman metric invariant runs up to a maximal reachable value in nature, i.e. practically the metric becomes singular. This observation allows us to suppose that in this situation the problems with such soft singularity will be much easier resolved in the future quantum gravity then by the situation with the ordinary hard singularity (Reissner-Nordstr\"om singularity, for example). It is supposed that the analogous consideration can be applied for the avoiding the hard singularities connected with the gauge charges.Comment: 5 page

    Fashionable Loafers for Male Students

    Get PDF
    Male students of the Department of Integrated Rural Art and Industry, Kwame Nkrumah University of Science and Technology, Kumasi have preference for three kinds of footwear: loafers, boots, and dressing shoes. They rate loafers as highly preferred for three main reasons: trendiness, adaptability, and economy. This research aimed to design and produce fashionable loafers for male students. The descriptive research method was used to give details about the tools and materials used for the footwear, and the processes for making the loafers. The participatory product design method was used, where the would-be users of the footwear were involved in the design process – they were consulted for their views and comments right from the early design stages till actualisation of the product. The target population was 150 male students of the said Department; 100 were accessible. The simple random sampling method was used; data was collected through interviews and observation. The study recognised that the popularity, acceptability or attractiveness of the first pair of loafers can be seen in 3 ways: African wear or the look alike, the use of beads, and youthfulness of colour. Adaptability and economy of footwear do show up in the varied application of colour and material, for multipurpose use of the footwear. The integration of locally obtainable materials (beads, fabric and leather) and necessary design factors were determined after which manufacturing operations such as pattern cutting, closing, lasting, attaching, arrangement of beads, and finishing were gone through to realize the shoes. Two pairs of loafers were produced; one has bright and lively colours, the other, relatively darker but appealing colours. Keywords: Male students, fashionable, loafers, adaptability, econom
    • …
    corecore