95 research outputs found

    Structures, Substrates, and Regulators of Mammalian Sirtuins – Opportunities and Challenges for Drug Development

    Get PDF
    Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses, and aging processes. Mammalia have seven Sirtuin isoforms, Sirt1–7, which differ in their substrate specificities and subcellular localizations. The physiological functions of Sirtuins make them interesting therapeutic targets, which has stimulated extensive efforts on development of small molecule Sirtuin modulators. Yet, most Sirtuin inhibitors show limited potency and/or isoform specificity, and the mechanism of Sirtuin activation by small molecules remains obscure. Accumulating information on Sirtuin substrates, structures, and regulation mechanisms offer new opportunities for the challenging task to develop potent and specific small molecule modulators for mammalian Sirtuins for in vivo studies and therapeutic applications. We therefore recapitulate advances in structural and mechanistic studies on substrate recognition and deacetylation by Sirtuins, and in the characterization of compounds and molecular mechanisms regulating their activity. We then discuss challenges and opportunities from these findings for Sirtuin-targeted drug development efforts

    Sirt1 activation by resveratrol is substrate sequence-selective

    Get PDF
    Sirtuins are protein deacetylases used as therapeutic targets. Pharmacological Sirt1 activation has been questioned since the in vitro activator resveratrol failed to stimulate deacetylation of several physiological substrates. We tested the influence of substrate sequence by analyzing resveratrol effects on Sirt1-dependent deacetylation of 6802 physiological acetylation sites using peptide microarrays. Resveratrol stimulated deacetylation of a small set of sites and inhibited deacetylation of another set, whereas most substrates were hardly affected. Solution assays confirmed these substrate categories, and statistical analysis revealed their sequence features. Our results reveal substrate sequence dependence for Sirt1 modulation and suggest substrates contributing to resveratrol effects. ONE SENTENCE SUMMARY: Testing 6802 acetylation sites reveals that resveratrol effects on Sirt1-dependent deacetylation depend on substrate sequence and suggests substrates relevant for in vivo effects

    Molecular architecture of the human protein deacetylase Sirt1 and its regulation by AROS and resveratrol

    Get PDF
    Sirtuins are NAD+-dependent protein deacetylases regulating metabolism, stress responses and ageing processes. Among the seven mammalian Sirtuins, Sirt1 is the physiologically best-studied isoform. It regulates nuclear functions such as chromatin remodelling and gene transcription, and it appears to mediate beneficial effects of a low calorie diet which can partly be mimicked by the Sirt1 activating polyphenol resveratrol. The molecular details of Sirt1 domain architecture and regulation, however, are little understood. It has a unique N-terminal domain and CTD (C-terminal domain) flanking a conserved Sirtuin catalytic core and these extensions are assumed to mediate Sirt1-specific features such as homo-oligomerization and activation by resveratrol. To analyse the architecture of human Sirt1 and functions of its N- and C-terminal extensions, we recombinantly produced Sirt1 and Sirt1 deletion constructs as well as the AROS (active regulator of Sirt1) protein. We then studied Sirt1 features such as molecular size, secondary structure and stimulation by small molecules and AROS. We find that Sirt1 is monomeric and has extended conformations in its flanking domains, likely disordered especially in the N-terminus, resulting in an increased hydrodynamic radius. Nevertheless, both termini increase Sirt1 deacetylase activity, indicating a regulatory function. We also find an unusual but defined conformation for AROS protein, which fails, however, to stimulate Sirt1. Resveratrol, in contrast, activates the Sirt1 catalytic core independent of the terminal domains, indicating a binding site within the catalytic core and suggesting that small molecule activators for other isoforms might also exist

    Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells

    Get PDF
    Sirtuin 6 (SIRT6) is a member of the NAD+-dependent class III deacetylase sirtuin family, which plays a key role in cancer by controlling transcription, genome stability, telomere integrity, DNA repair, and autophagy. Here we analyzed the molecular and biological effects of UBCS039, the first synthetic SIRT6 activator. Our data demonstrated that UBCS039 induced a time-dependent activation of autophagy in several human tumor cell lines, as evaluated by increased content of the lipidated form of LC3B by western blot and of autophagosomal puncta by microscopy analysis of GFP-LC3. UBCS039-mediated activation of autophagy was strictly dependent on SIRT6 deacetylating activity since the catalytic mutant H133Y failed to activate autophagy. At the molecular level, SIRT6-mediated autophagy was triggered by an increase of ROS levels, which, in turn, resulted in the activation of the AMPK-ULK1-mTOR signaling pathway. Interestingly, antioxidants were able to completely counteract UBCS039-induced autophagy, suggesting that ROS burst had a key role in upstream events leading to autophagy commitment. Finally, sustained activation of SIRT6 resulted in autophagy-related cell death, a process that was markedly attenuated using either a pan caspases inhibitor (zVAD-fmk) or an autophagy inhibitor (CQ). Overall, our results identified UBCS039 as an efficient SIRT6 activator, thereby providing a proof of principle that modulation of the enzyme can influence therapeutic strategy by enhancing autophagy-dependent cell death

    Natural Glycoforms of Human Interleukin 6 show atypical plasma clearance

    Get PDF
    A library of glycoforms of human interleukin 6 (IL‐6) comprising complex and mannosidic N‐glycans was generated by semisynthesis. The three segments were connected by sequential native chemical ligation followed by two‐step refolding. The central glycopeptide segments were assembled by pseudoproline‐assisted Lansbury aspartylation and subsequent enzymatic elongation of complex N‐glycans. Nine IL‐6 glycoforms were synthesized, seven of which were evaluated for in vivo plasma clearance in rats and compared to non‐glycosylated recombinant IL‐6 from E. coli. Each IL‐6 glycoform was tested in three animals and reproducibly showed individual serum clearances depending on the structure of the N‐glycan. The clearance rates were atypical, since the 2,6‐sialylated glycoforms of IL‐6 cleared faster than the corresponding asialo IL‐6 with terminal galactoses. Compared to non‐glycosylated IL‐6 the plasma clearance of IL‐6 glycoforms was delayed in the presence of larger and multibranched N‐glycans in most case
    • 

    corecore