17 research outputs found

    Sub-Natural Linewidth Single Photons from a Quantum Dot

    Full text link
    The observation of quantum dot resonance fluorescence enabled a new solid-state approach to generating single photons with a bandwidth almost as narrow as the natural linewidth of a quantum dot transition. Here, we operate in the Heitler regime of resonance fluorescence to generate sub-natural linewidth and high-coherence quantum light from a single quantum dot. The measured single-photon bandwidth exhibits a 30-fold reduction with respect to the radiative linewidth of the QD transition and the single photons exhibit coherence properties inherited from the excitation laser. In contrast, intensity-correlation measurements reveal that this photon source maintains a high degree of antibunching behaviour on the order of the transition lifetime with vanishing two-photon scattering probability. This light source will find immediate applications in quantum cryptography, measurement-based quantum computing and, in particular, deterministic generation of high-fidelity distributed entanglement among independent and even disparate quantum systems

    Trapping electrons in a room-temperature microwave Paul trap

    Full text link
    We demonstrate trapping of electrons in a millimeter-sized quadrupole Paul trap driven at 1.6~GHz in a room-temperature ultra-high vacuum setup. Cold electrons are introduced into the trap by ionization of atomic calcium via Rydberg states and stay confined by microwave and static electric fields for several tens of milliseconds. A fraction of these electrons remain trapped longer and show no measurable loss for measurement times up to a second. Electronic excitation of the motion reveals secular frequencies which can be tuned over a range of several tens to hundreds of MHz. Operating a similar electron Paul trap in a cryogenic environment may provide a platform for all-electric quantum computing with trapped electron spin qubits.Comment: Version accepted by PR

    Surface trap with dc-tunable ion-electrode distance

    Full text link
    We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and consequentially the ion-electrode distance via dc-electrodes only. We demonstrate confinement of single 40^{40}Ca+^+ ions at heights between 50 μ50~\mum and 300 μ300~\mum above planar copper-coated aluminium electrodes. We investigate micromotion in the vertical direction and show cooling of both the planar and vertical motional modes into the ground state. This trap architecture provides a platform for precision electric-field noise detection, trapping of vertical ion strings without excess micromotion, and may have applications for scalable quantum computers with surface ion traps

    Changes in electric-field noise due to thermal transformation of a surface ion trap

    Full text link
    We aim to illuminate how the microscopic properties of a metal surface map to its electric-field noise characteristics. In our system, prolonged heat treatments of a metal film can induce a rise in the magnitude of the electric-field noise generated by the surface of that film. We refer to this heat-induced rise in noise magnitude as a thermal transformation. The underlying physics of this thermal transformation process is explored through a series of heating, milling, and electron treatments performed on a single surface ion trap. Between these treatments, 40^{40}Ca+^+ ions trapped 70 μ\mum above the surface of the metal are used as detectors to monitor the electric-field noise at frequencies close to 1 MHz. An Auger spectrometer is used to track changes in the composition of the contaminated metal surface. With these tools we investigate contaminant deposition, chemical reactions, and atomic restructuring as possible drivers of thermal transformations. The data suggest that the observed thermal transformations can be explained by atomic restructuring at the trap surface. We hypothesize that a rise in local atomic order increases surface electric-field noise in this system
    corecore