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Summary

Single spins confined in semiconductor quantum dots - artificial atoms in the

solid-state - are attractive candidates for quantum mechanical bits, the funda-

mental units and building blocks of a quantum computer. The ability to address

quantum dot spins optically allows us to initialise and manipulate the state of

the quantum bit. Gaining information on the qubit, for example by reading out

its state, not only requires state-selective optical excitation, but also access to

the single photons scattered in response by the quantum dot. Further, for a dis-

tributed computer architecture where nodes of few quantum bits are interlinked

via optical communication channels photonic quantum bits are required to faith-

fully transmit the quantum information.

In this thesis we advocate resonant excitation of quantum dot transitions and

collection of the resonance fluorescence to address two outstanding challenges:

generating dephasing-free single photons for use as flying quantum bits and single-

shot spin readout. To this end we investigate the spectral and first-order coher-

ence properties of quantum dot resonance fluorescence. In particular, we directly

observe highly coherent scattering in the low Rabi frequency limit which has

remained unexplored for solid-state single photon emitters so far. At the same

time, interactions with the semiconductor environment are revealed and quan-

tified through their optical signatures: exciton-phonon coupling, nuclear spin

dynamics and local electric field fluctuations signal a departure from the ideal

atom-like behaviour.

Taking advantage of the laser-like coherence of single phase-locked quantum dot

photons in the Heitler regime, we demonstrate near-ideal two-photon quantum

interference. This benchmark measurement is a precursor for the photonic en-

tanglement of distant quantum dot spins in a quantum optical network, and the

results here predict a high fidelity operation.

Finally, moving to tunnel-coupled quantum dot molecules we show that the over-

lap of carrier wave functions in two closely spaced quantum dots forms new spin-

selective optical transitions not available in single quantum dots. Then, the pres-

ence or absence of scattered photons reveals the electron spin. Intermittency in

the quantum dot resonance fluorescence allowed us, for the first time, to observe

spin quantum jumps in real-time.

Both achievements - highly coherent photons and spin readout - provide the

missing link to attempt creation of a small-scale quantum network now.
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Chapter 1

Introduction

The last two decades have seen a tremendous interest in the emerging field of

quantum information technology. The promise of quantum information process-

ing is an exponential speed-up of a range of computational problems whose calcu-

lation is not feasible with current technology. In the pursuit of control of materials

at the fundamental - quantum - level, this research has already developed a rich

toolbox of techniques that enabled advances in metrology and sensing applica-

tions, and is driving progress in understanding and designing materials at the

nanoscale.

Binary logic, the basis of classical computers, despite its obvious successes, is

not very good at dealing with complex system problems, e.g. many-body sim-

ulations. In these problems the number of computational steps scales exponen-

tially with the number of elements, such that any simulation becomes rapidly

intractable. Protein folding provides an example of such a complex system where

understanding the spatial configurations is also key to understanding diseases

like Alzheimer’s. As another example, quantum mechanical processes themselves

cannot be efficiently modelled with classical computers as there is no classical

equivalent for most quantum effects. The solution is a computer that does not

operate on classical physics, but on the basis of quantum mechanics, where en-

tanglement of different quantum bits is exploited for massive parallel computing.

At this stage research evolves from obtaining information about physical systems

to an approach where “information is physical”[1] and constitutes a part of a
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complex system.

Today’s paradigm of a quantum computer, dubbed the “Quantum Internet” [2],

is a network consisting of nodes of one to a few stationary quantum bits, such

as single atoms, solid-state impurities, electron or hole spins connected via flying

quantum bits, such as single photons. Quantum information processing based on

solid-state spins was kick-started by a proposal by Loss and DiVincenzo less than

15 years ago [3]. The requirements for a realisation are summarised in what are

known as the 7 DiVincenzo criteria [4]. Starting with a physical represen-

tation of a quantum bit, control over individual quantum bits, pairs of quantum

bits and the exchange of information between separate quantum bits form the

ingredients necessary to perform arbitrary operations and algorithms.

Getting to the stage of a working prototype of a quantum computer is a huge

technical challenge, and at the present time many research groups, academic,

governmental and commercial alike, are exploring a number of physical systems

that can form the building blocks.

This thesis is concerned with small parts of this huge challenge for one partic-

ular physical system: optically active semiconductor quantum dots. We loosely

summarise the aims of this particular work as follows. The generation of clean

photons from a semiconductor quantum dot. Of course, clean is not a proper

scientific term, but purposely chosen, as the requirements on photons change

with the respective goals. For the greatest part of this thesis we are concerned

with generating photons of high coherence, with as little dephasing as possible.

However, in applications such as spin readout, scattering rates and the need for

recycling transitions take precedence.

Phrased differently, in this thesis we discuss resonant generation of single pho-

tons from single quantum dots and tunnel-coupled quantum dot molecules in the

context of quantum information processing.

In the introduction we cover the basics of what quantum dots (QDs) are and give

a brief overview on different types of QDs and their properties. We will put this

work in a wider context by presenting the main motivation, quantum information

processing, and review the standard criteria required for a physical realisation of a
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quantum bit and the transfer of quantum mechanical information via flying quan-

tum bits. Chapter 2 provides the theoretical background for the thesis. It covers

light-matter interaction for the simplest case of a two-level system. This forms the

theoretical basis to calculate the properties of resonance fluorescence and links to

the standard techniques of quantum optical interferometry, namely the first- and

second-order correlation functions. Chapter 3 introduces the experimental system

and lab techniques, from sample processing to resonant spectroscopy. Applying

these techniques, Chapter 4 translates the resonance fluorescence theory from

Chapter 2 into experiments, highlighting the near-ideal behaviour of QD optical

transitions in the low power limit of resonant excitation. This includes the direct

observation of highly coherent scattering, which has remained largely unexplored

for solid-state single photon emitters. Deviations from this ideal behaviour are

explored in the second half of the chapter, where we reveal signatures of exciton-

phonon coupling, effects of nuclear spin dynamics, and spectral wandering in the

statistical properties of resonance fluorescence. Chapter 5 investigates proper-

ties of optically induced electric fields in our QD device structure. Chapter 6

demonstrates the potential of shaped single coherent photons for quantum inter-

ference applications, exemplified in two-photon interference measurements in a

Hong-Ou-Mandel interferometer. Chapter 7 illustrates single-shot spin readout

in a vertically stacked tunnel-coupled quantum dot molecule. Finally, conclusions

and a very brief outlook on further experimental work are given in Chapter 8.

1.1 Quantum Information Processing

Quantum computing proposes to make use of intrinsically quantum mechanical

features such as superposition of states and entanglement. Whereas classical bits

take only the values 0 or 1, the state of a quantum bit, or short qubit, is given

by a linear superposition of its two basis states |ψ〉 = c0|0〉 + c1|1〉, where the

coefficients are in general complex. It has been shown that some problems can be

solved more ‘efficiently’ using qubits, most notably Shor’s algorithm to factoring

high digit numbers [5]. In addition to these improvements on classical computing,

new, entirely quantum mechanical concepts can be realised, with quantum cryp-

tography and quantum key distribution as the high profile applications which are
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already commercially available

1.1.1 DiVincenzo’s 5 + 2 and quantum optical networks

A set of requirements a physical qubit needs to fulfill has been formulated by

DiVincenzo and co-workers in 2000 [4] which quickly became the Commandments

of quantum computing. We quote them here directly:

1. A scalable physical system with well characterised qubits. What are the

qubit basis states and how are they coupled? What other states or inter-

actions may play a role? The scalability requirement is more involved; we

need not only consider qubit-qubit coupling, but also the physical resources

involved.

2. The ability to initialise the state of the qubits to a simple fiducial state, such

as |000 . . .〉. We need to set the exact state (phase and amplitude) of the

system before any operations are performed.

3. Long relevant decoherence times, much longer than the gate operation time.

In short, a quantum state loses memory of its phase (dephasing) and am-

plitude (relaxation) after some time and any operation on a state that is no

longer well defined is meaningless. Mechanisms for error correction exist,

see for instance Ref. [6] and the standard estimate is that the decoherence

time needs to be larger than the gate operation by a factor of 104 − 105.

4. A set of universal quantum gates. Any operation can then be broken down

into a number of gate operations. For a single qubit this translates to having

full control over amplitude and phase of the qubit. Conceptually, the qubit

state is visualised as a point on the surface of a sphere (Bloch sphere) and

experimentally we need to be able to reach any point on the surface.

5. A qubit-specific measurement capability to read out the results of a set of

operations.

4



The starting point to any physical implementation is to identify a two-level system

that serves as qubit. Two-level systems or quasi-two-level systems can be found

in many areas of physics, so there is a wealth of qubit candidates. A number of

these are presented in Ref. [7], or more recently in Ref. [8]. Electron or hole

spins in quantum dots are attractive candidates as they can be controllably in-

troduced, spin states can be manipulated optically, and/or using external electric

and magnetic fields. Equally important, research suggests very long decoherence

times. We will elaborate on the performance of spins in QDs in the context of

these requirements in section 1.4.

The last two requirements are slightly separate from the previous ones; they are

concerned with communicating quantum information between separate qubits

and over macroscopic distances.

6. The ability to interconvert stationary and flying qubits. This translates to

creating entanglement between the stationary qubit, e.g. the QD spin, and

a photon.

7. The ability faithfully to transmit flying qubits between specified locations,

which requires a communication channel.

Requirements 6 and 7 lead to the vision of a quantum optical network we men-

tioned earlier - the Quantum Internet. Figure 1.1 from Ref. [2] shows a graphical

representation of the concept. Theoretical proposals based on this idea are al-

ready well-developed.

1.2 Semiconductor quantum dots

In general, QDs (sometimes called quantum boxes) refer to semiconductor struc-

tures that confine electrons (or holes) in nanoscale potentials in all three spatial

dimensions. As such they show many properties known from atoms: The three-

dimensional quantum confinement gives rise to a δ-function-like density of states

(i.e. discrete energy levels) and a shell structure is observed when electrons are

added one by one [9; 10; 11]. Single quantum dots have been termed ‘artificial

atoms’ for these reasons. Semiconductor quantum dots have been the subject of
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Figure 1.1: Illustration of the quantum internet as a network of nodes connected by
non-classical communication channels (top) and the transfer of quantum information
between two qubits in cavities. Reproduced from Ref. [2].

much research during the past 20 years. First proposed by Arakawa and Sakaki in

1982 as highly efficient and temperature-independent emitters in the active areas

of semiconductor diode lasers [12], they are now used in a number of research

areas.

Realisation of these structures was made possible following the advances in fab-

rication techniques such as molecular beam epitaxy or metalorganic chemical

vapour deposition [13] that allow layer by layer growth of semiconductors while

controlling the composition of each layer.

There are two main techniques for creating quantum dots: self-assembly and elec-

trical definition. Both types of dots are commonly used in experiments aiming

to control quantum properties like the electron spin and will be briefly introduced:

• Electrically defined QDs: metallic surface gates above a two-dimensional

electron gas at an interface, typically GaAs/AlGaAs, can be used to deplete

the electron gas below them, isolating small islands of electrons from the

electron gas. The small size of the islands leads to quantisation in the

remaining two dimensions. These electrically defined dots are also called

lateral QDs and the strength and shape of their confining potential can be
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conveniently modified by changing the gate voltage, allowing an all-electric

approach to spin control. In such a way tunnel-coupled double and triple

QD structures have been realised [14].

• Self-assembled dots: the quantum dots used in this study were grown in

Stranski-Krastanov mode1 [17]. Layered semiconductor structures are cre-

ated using molecular beam epitaxy. A higher bandgap substrate layer, typi-

cally GaAs, is grown, followed by ∼ two monolayers of a lower bandgap ma-

terial, InAs in our case. This is called the wetting layer. As a consequence

of local strain fields due to the mismatch of lattice constants between two

layers islands form in the wetting layer at a critical thickness. The growth

conditions determine size and shape of these islands, hence the confinement

energy. Self-assembled QDs are usually lens-shaped with a diameter of a

couple of tens of nanometres and a stronger confinement in growth (z-) di-

rection (few nm). The wetting layer containing the QDs is overgrown with

GaAs, in some cases only partially, such that the QD height can be con-

trolled in an additional annealing step. When another InAs wetting layer

is added 10-20 nm above the previous, QDs nucleate preferentially on top

of QDs in the first layer, thus vertically coupled QD molecules are created.

Gating the sample allows control over the number of charges resident in the

QD. For an introduction and a review of QD growth see for instance Ref.

[18].

1.2.1 Quantum information, metrology and mesoscopic

physics

QDs provide optically addressable two-level systems in the the solid state with

good optical properties. Excited state lifetimes on the order of one nanosec-

ond promise high single photon emission rates. This makes QDs attractive for

quantum key distribution. Electrically driven single photon sources have been

1There are other important self-assembly mechanisms that lead to creation of quantum dots,
such as precipitation of colloidal QDs (e.g. CdTe and CdSe) in solution[15], or QDs formed as
interface fluctuations in a quantum well [16]. For the purpose of spin control the electrically
defined QDs and Stranski-Krastanov QDs offer the most desirable properties and are used in
current research.
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developed [19] and tested in laboratories [20].

The confinement of single spin carriers provides partial protection from the solid-

state environmental effects that rapidly dephase and relax any unprotected ini-

tially well-defined states. Spin manipulation, taking advantage of the optically

excited states, allows gate operation times of picoseconds [21; 22] which is con-

siderably faster than using electric fields or microwave excitation.

Spins and charges in quantum dots are not completely isolated, however, and the

question of how atom-like these artificial atoms really are is an important one to

answer. What role does the semiconductor environment play? Bound electron-

hole pairs in QDs, excitons, still interact with the lattice phonons, electron and

exciton spins experience the dynamics of the nuclear spin bath via the hyperfine

interaction. QD transition energies are sensitive to electric field fluctuations in

the environment, dynamics of nearby charge traps or neighbouring QDs. These

effects pose challenges to quantum information applications, where unwanted in-

teraction should be kept to a minimum, but open up other opportunities.

The sensitivity to environmental effects can be exploited for metrology appli-

cations. This has been spectacularly demonstrated for magnetometry with the

nitrogen vacancy centre in diamond [23]. For QDs, electrometry has been pro-

posed and demonstrated [24]. At the same time, optical thermometers based on

colloidal QDs are advocated in biological sciences (see for example Ref. [25]).

The environmental effects on the QD optical properties are topic of section 4.2

in Chapter 4, and Chapter 5 contains an application of QD electrometry.// Next

we look at the QD energy level structure in more detail.

1.3 QD level structures

This section contains a brief discussion of the level structure for the neutral and

the negatively charged QD ground states. The effects of external electric and

magnetic fields of the levels are touched upon, and we introduce some interactions

with the solid-state environment. These will be picked up again at the appropriate

places in the experimental chapters.
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1.3.1 Exciton fine structure

We are working with QDs which are either empty or single electron charged in

their ground state. The excited states, accessible via absorption of a photon, are

then the neutral exciton (a single electron-hole pair) and the negatively charged

exciton (called trion), respectively. The heavy- and light-hole bands are strongly

separated in quantum confinement, so that holes in the QD are to a good ap-

proximation heavy-holes with total angular momentum Jhh = 3/21. The energy

and fine structure of the optical transitions are governed by Coulomb interactions

which we separate into direct Coulomb interaction and exchange interaction.

Direct Coulomb interactions for two particles a and b are, in general, given by

VCoulomb =

∫ ∫
drdr′ |r− r′|−1

φa (r)∗ φb (r′)
∗
φa (r)φb (r′) , (1.1)

where the φi (x) are the orthonormal wavefunctions of particles i (electron e or

hole h) at location x. Exchange interaction

Vexchange =

∫ ∫
drdr′ |r− r′|−1

φa (r)∗ φb (r′)
∗
φa (r′)φb (r) (1.2)

has consequences for the fine structure of the neutral exciton. Neglecting ex-

change, there are four degenerate neutral exciton states at zero magnetic field:

↑⇓, ↓⇑, ↑⇑ and ↓⇓, where single-lined arrows denote electron spin projection and

double-lined arrows the heavy hole projections. Creation and recombination of

↑⇓, ↓⇑ excitons is allowed by electric dipole selection rules and hence they are

‘bright’, while the ↑⇑ and ↓⇓ excitons are forbidden and ‘dark’. Electron-hole

exchange gives rise to three terms [28]: The isotropic exchange splits dark and

bright excitons by an energy δ0. The anisotropic exchange δ1 hybridises the two

bright excitons in the absence of magnetic field into orthogonal, linear superposi-

tions ↑⇓ ± ↓⇑ [29]. Their splitting is known as XY -splitting. The dark excitons

are split by δ2. Anisotropic electron-hole exchange vanishes for QDs with cir-

1The approximation of holes in QDs as pure heavy-holes is a valid approximation in many
cases, but QDs do exhibit a small degree of mixing with the light-holes states ⇑+1/2 and ⇓−1/2.
For single QDs a spread of admixtures has been observed; for our single QD samples the
admixture is typically of a few percent [26]. In coupled QDs heavy-light hole mixing can be
enhanced through an offset of the vertically stacked QDs relative to each other [27].
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cular symmetry, but we observe it for all QDs in our sample. The exchange

Hamiltonian for basis states ↑⇓, ↓⇑, ↑⇑, ↓⇓ is [28]

Hexchange =
1

2


δ0 δ1 0 0

δ1 δ0 0 0

0 0 −δ0 δ2

0 0 δ2 −δ0

 . (1.3)

1.3.2 The nuclear Overhauser field

We have to keep in mind that, while QDs are termed artificial atoms and show

some atomic-like properties, charges are confined in a mesoscopic environment

and interactions with the solid-state matrix can give rise to very ‘un-atomic’

effects.

A self-assembled In/GaAs quantum dot consists of N ∼ 105 atoms and each one

of them has a nuclear spin (spin 3/2 for Ga and As and 9/2 for In). A single

electron or hole spin confined in the QD interacts with the nuclear spins through

the hyperfine interaction. For electrons the dominant term of this interaction [30]

is the Fermi contact interaction1

HHF =
∑
k

AkŜ · Îkδ (r−Rk) , (1.4)

where Rk gives the position of the kth nucleus with spin Îk, r the position of the

electron with spin Ŝ, and the hyperfine coupling constant A reflects the spatial

dependence of the electron wave function in the QD. The effect of nuclear spins

is commonly described as an effective magnetic field BN acting on the electron.

The magnitude of this field, named Overhauser field, is then given as

BN =

∑
k AkÎk
gµB

. (1.5)

The Overhauser field effect can be understood as the electron spin precessing in a

time-varying magnetic field, where the field strength and direction at any time is

1We note that other terms, such as dipole and quadrupole interaction play a role too, see
for instance Refs. [31; 32].
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given by the sum of all nuclear spins vectors. If there is no preferential alignment

of the nuclear spins, for instance in the absence of an external magnetic field,

then the individual spins are randomly oriented. This gives rise to a spherical

symmetry of the Overhauser field distribution. While the mean of the Overhauser

field is zero, the most likely configuration has a finite field strength.

The Overhauser field evolves on timescales of microseconds [33] while remaining

frozen on shorter timescales. Its root-mean-square magnitude can be estimated

from the number of nuclear spins and is typically on the order of a few tens of

millitesla [34].

Eq. (1.4) includes electron-nuclear spin flip-flop terms, and hyperfine interaction

is the dominant source of spin relaxation at low magnetic fields. This relax-

ation is due to direct coupling between the ground states. At finite fields the

incommensurate splitting of the QD ground state compared to the nuclear spin

splitting renders spin relaxation due to the flip-flop terms inefficient. However,

electric-dipole forbidden transitions can be enabled by concomitant nuclear spin

flips. Research into this link between electron spin and nuclear polarisation has

revealed interesting physics [35; 36] and partial control of the nuclear spins has

been demonstrated [37; 38; 39; 40]. A controllable nuclear field can be employed

as resource in quantum control [41].

The influence of the nuclear spin bath on QD emission spectra will be discussed

in Chapter 4, section 4.2.3.

1.3.3 Trion levels under magnetic and electric fields

Zeeman shifts. So far research into electron or hole spins in optically active

QDs has focussed mostly on single spins as qubits. Experimental studies into

other approaches, such as using two spins, have only emerged recently [42; 43;

44]. Our approach also concentrates on a single spin. Under magnetic field the

degeneracies of the single electron ground states and the excited trion states are

lifted according to the electron (ge) and hole (gh) g-factors:

HZeeman = −µB
(

ge,zSe,z −
gh,z

3
Je,z

)
Bz,

11



Figure 1.2: Selection rules for Faraday and Voigt geometry under magnetic
field. The spin and charge states for each level are given: arrows denote spin projection
for electrons (filled circles) and holes (empty circles). In the excited states the two
electrons form a spin singlet, so that the total spin is determined by the hole spin
projection.

where µB is the Bohr magneton and we have chosen the magnetic field to be

in the z-direction and neglected the diamagnetic shift, which adds a quadratic

dependence on the magnetic field [45]. Two geometries are being explored in

experiments: in Faraday geometry the magnetic field is parallel to the sample

growth axis and coincides with the direction of optical axis. In Voigt geometry

the magnetic field is perpendicular to the growth and optical axis. Selection rules

differ for these two geometries. We show the level structure and selection rules

for the trion transitions in Fig. 1.2.

Faraday geometry is used in Chapter 5. The solid-state environment (see pre-

vious section) relaxes the selection rules, so that there is a small probability of

relaxation into the opposite ground state when cycling one of the allowed tran-

sitions (branching ration ∼ 200:1). The ground states are very weakly coupled,

leading to a finite spin-flip rate (see 1.3).

Stark shifts Excitons in QDs have a large permanent electron dipole moment,

as the electron and hole are physically separated by a ∼ nanometre distance [46].

Due to the local confinement in the low bandgap QD, the exciton energy can be

tuned over many times its radiative linewidth by external electric fields without

ionising. The energetic shift of QD photoluminescence as a function of applied
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Figure 1.3: Relaxation of selection rules in the trion transition as a result of interac-
tions with the environment.

vertical field F is dominated by the change of the exciton energy and contains

both linear and quadratic terms:

∆Eexciton = −µFapplied + αF 2
applied , (1.6)

where µ is the permanent dipole and α the polarisability. In our structures the

Stark shift is entirely linear to a good approximation; the quadratic term has

been observed for larger applied fields in different QD device structures [46; 47].

1.4 Coherent control of single spins: state of

research

Here, we summarise the current state of research into coherent control of spins

in QDs. It will become obvious that not all DiVincenzo criteria can be realised

to equal extents in single QDs and how coupled QDs, quantum dots molecules

(QDMs), offer a natural extension that allows spin state readout.

A complete quantum operation on a single qubit can be separated into three

parts: state preparation/initialisation, coherent manipulation and state readout

at the end. From the DiVincenzo criteria we pick the three requirements relating

to spin control and the requirement on coherence times. We give an overview
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of recent progress in these areas, focussing mostly on optically active QDs. The

numbering below follows the DiVincenzo criteria introduced earlier, so, having

chosen spin up and down as basis states, we start with number two:

2. State initialisation was first demonstrated in 2006 [48]. It relies on the

state mixing in Faraday geometry described above (see Fig. 1.3). A spin-

flip Raman transition occurs after cycling a trion transition for a few µs,

and provided that spin relaxation is much slower than this optical ‘spin

pumping’, the spin state is initialised. Transferring this protocol into Voigt

geometry, optical spin pumping initialises the spin within a few ns [49] .

This is possible as the excited trion state is coupled equally to both single

electron spin ground states. However, initialisation fidelities can suffer from

detuned pumping via the other excited state (cf. Fig. 1.2). Similar optical

pumping has also been observed for single holes [50].

3. Much effort has also been put into determining spin coherence times (the

dephasing time T2) and prolonging it. We distinguish here between the

inhomogeneous dephasing time T ?2 which is derived from a time-averaged

measurement and equivalent to an ensemble dephasing time, and the homo-

geneous dephasing time T2 which would be measured for a single spin in a

single measurement. The inhomogenous dephasing time T ?2 of the electron

spin is consistently found to be on the order of 1 ns, limited by averaging

over the different Overhauser field configurations for individual measure-

ments [39; 51; 52; 53]. However, the Overhauser field is fluctuating slowly

(∼ µs or slower [33]), so we should expect homogeneous T2 times in the

microsecond range as well. Optical spin-echo of a single spin [52] and ma-

nipulation of a spin ensemble subset [54] do indeed recover T2 ∼ few µs.

Use of dynamic decoupling techniques has resulted in a tremendous im-

provement of these numbers for electrically defined QDs, reaching dephas-

ing times in excess of 100 µs [55]. In parallel, research efforts directed at

influencing the nuclear spin bath and quieting down the fluctuations have

shown some success [37], and coherent population trapping measurements

suggest an improved inhomogeneous dephasing time of a few microseconds.

Further, qubits encoded in the two-electron singlet-triplet basis can be en-
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gineered to be insensitive to environmental fluctuations and the inhomoge-

neous dephasing time is in on the order of 100 ns, or longer [44].

Finally, much attention has also been paid to hole spin qubits due to their re-

duced Fermi contact hyperfine interaction. Inhomogeneous dephasing times

in the range of 2 to 20 ns have been reported [43; 56; 57], and T2 ∼ 1 µs

with a a Hahn spin-echo [56].

With ps manipulation capabilities, these coherence times would be sufficient

for 104 − 105 operations, i.e. error correction. We note, that each optical

operation may still induce some decoherence, however, so it remains to be

seen what the performance in actual applications will be like.

4. The requirement of a universal set of quantum gates is experimentally

equivalent to having full control over the Bloch sphere for a single qubit. In

order to reach any point on the Bloch sphere rotations about two axes are

necessary. Typically one rotation axis can be associated with controlling

the amplitude of the qubit (rotations in zx− or zy−plane) at a fixed phase,

the other rotation sets the phase of the qubit (xy-plane). Much progress

has been made in coherent optical control of electron spins. Complete con-

trol has been achieved for single spins [22; 58] and an ensemble subset [59].

Press et al. [22] and Kim et al. [58] operate in Voigt geometry, where the

electron ground states can be coupled using two-photon Raman transitions,

cf. Fig. 1.2. Rabi oscillations between ↑ and ↓ are observed, demonstrating

control over the qubit amplitude. Fast Larmor precession in a high mag-

netic field provides the second rotation for Press et al. as is evidenced by

Ramsey interference. In [58] the free Larmor precession is complimented by

geometric phases that can be imparted to one spin component of a coherent

superposition of ↑ and ↓. This adds control to the otherwise free precession

about the magnetic field.

The same level of control has been demonstrated for single hole spins in a

QD [43; 56; 57]. Further, research conducted in the United States’s Naval

Research Laboratory could extend the control scheme to two independent

spins (both electrons and holes) in tunnel-coupled QD molecules. Em-

ploying exchange interaction between the spins and geometric phase gates
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allowed the implementation of two-qubit rotations - the first demonstration

of both single- and two-qubit control for QDs [42; 43].

With regard to electrically defined QDs, rotations of 2-electron qubits in

electrically defined double QDs have been achieved via control of the ex-

change interaction [51] and more recently by creating a magnetic field gra-

dient across the QDM [38]. The combination of the rotations enable full

control over the Bloch sphere.

In Faraday geometry spin rotations have been performed using microwaves

[60]. While operation in Voigt geometry allows completion of a gate oper-

ation in a few tens of ps [22], the need to rely on microwave rotations have

limited spin manipulation in Faraday geometry to ∼ 100 ns.

5. Spin readout has mostly relied on averaging the results of many (> 104)

measurements to obtain reliable results. Attempting to directly measure the

population of a spin state in Voigt geometry leads to spin shelving within

a few optical cycles, so that only 1-2 photons are scattered in each readout

attempt. Standard photon collection and detection efficiencies are around

0.1-1% [53; 61], requiring ∼ 104 attempts to distinguish between spin up

and down states. The collection and detection rates are mostly limited by

the photon extraction from the high-index semiconductor into free space.

Research to remedy this problem is progressing well though, with reports

of 70 % sample outcoupling efficiencies in specialised sample designs [62].

Single-shot readout in Faraday geometry is less hopeless; the reduced back-

action of the readout laser causes spin shelving in ∼ 1 µs [26] here and

state-of-the-art collection efficiencies should allow single-shot readout now.

Non-destructive readout techniques, such as Faraday rotation [63] and Kerr

rotation [64] have been successfully applied to determine the spin state of

a single electron, but require integration over many milliseconds.

The first successful attempt at single-shot spin readout is detailed in Chap-

ter 7 of this thesis. We use a QD molecule consisting of two vertically cou-

pled QDs where a transition to a molecular excited state is spin-sensitive

and recycling.

6. Spin-photon entanglement: The sixth of the Divincenzo criteria was
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demonstrated independently by three groups recently [53; 65; 66]. They

employ a single electron spin in a single QD in Voigt geometry. As each

excited state forms a Λ-system with the two ground states the polarisation

(and frequency) of a single scattered photon is entangled with the state

of the QD electron spin. Measurements of spin-photon correlations in two

independent bases were then used to prove the entanglement.
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Chapter 2

Light-matter interaction of two

levels: resonance fluorescence

In this chapter we recap the near-resonant light-matter interaction of a simple

two-level system. This is a standard topic in quantum optics textbooks and as

such it would be pointless to provide a comprehensive treatment here. However,

Chapter 4 and, to some extent, Chapter 6 are concerned with determining the

extent to which optical QD transitions confirm with the predictions for ideal two-

level systems. So we give here a summary of theoretical background and sketch

out derivations of resonance fluorescence properties. Important reference for this

chapter are Loudon’s The Quantum Theory of Light [67], chapters 2, 7.9 and

8 in particular, Quantum Optics by Scully and Zubairy [68], chapters 5 and 10,

and Elements of Quantum Optics by Meystre and Sargent [69], chapters 4 and 16.

The aim of this chapter is to sketch out how we can derive the properties of

the emission from a resonantly driven two-level system. The resonance fluores-

cence is defined by its spectral and statistical properties, which can be calculated

- and measured - through field- and intensity-correlation functions. The reso-

nance fluorescence spectrum, first derived by Mollow in 1969 [70], can be found

with a fully quantum mechanical treatment, i.e. with both quantised fields and

a quantised emitter, see Ref. [71] for example. A semi-classical approach, where

the optical field is classical, gives the same results though, and for simplicity this
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Figure 2.1: Sketch of two-level system and optical field. The ground (|1〉) and excited
(|2〉) states are coupled by a monochromatic field of energy ~ωL which is close to the
energy difference for the two levels. Spontaneous emission broadens state |2〉 and its
population relaxes with rate Γ.

approach will be followed. Details of the calculation can also be found in Ref.

[72], a subsequent paper by Mollow. The optical Bloch equations obtained this

way not only reveal the steady-state behaviour of populations and coherences of

the two-level-system for near-resonant driving frequencies, but solving the density

matrix equation of motion is also key to obtaining the first-order correlation func-

tion, and hence the spectrum of the scattered light (the resonance fluorescence).

The intensity correlation function can be derived in a similar fashion.

2.1 Optical Bloch equations and the density ma-

trix

The premise. First we introduce the parameters of the two-level system and

the light field. Figure 2.1 shows a sketch of the energy levels. Ground and

excited states, denoted |1〉 and |2〉, are separated by an energy ~ω. For a QD

neutral exciton transition the ground state would correspond to the crystal ground

state, while the excited state is a single exciton. In the sketch the excited state

is broadened due to spontaneous radiative relaxation to the ground state, and

the width Γ indicates the decay rate. In the absence of other interactions, this
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decay rate is given by the inverse excited state lifetime which we denote T1.

This timescale governs the decay of excited state population, but also the decay

of the QD polarisation. To account for additional dephasing processes of the

polarisation we introduce the dephasing time T2 here. We distinguish between

radiative dephasing and any additional pure dephasing, quantified by γp:

1

T2

=
1

2T1

+ γp. (2.1)

The optical field is a single monochromatic mode of frequency ωL = ω + ∆,

where ∆ is the detuning from the QD resonance. The QD-field interaction is

conveniently described using the QD density matrix:

ρ = |Ψ〉 〈Ψ|

= (c1 (t) |1〉+ c2 (t) |2〉) (c?1 (t) 〈1|+ c?2 (t) 〈2|)

= |c1|2 |1〉 〈1|+ c1c
?
2 |1〉 〈2|+ c2c

?
1 |2〉 〈1|+ |c2|2 |2〉 〈2| (2.2)

where the QD state |Ψ〉 is a linear superposition of its two basis states, with

time-dependent coefficients ci (t). The density matrix elements ρij are obtained

as

ρij = 〈i| ρ |j〉 . (2.3)

The diagonal elements give the populations and satisfy ρ11 + ρ22 = 1. The off-

diagonal elements ρ12 = ρ?21 are related to the QD polarisation and called the

‘coherences’.

Optical Bloch equations. The evolution of the density matrix elements for

the QD-light interaction is described by the equation of motion

ρ̇ = − i
~

[Hint, ρ]− 1

2
(γρ+ ργ) . (2.4)

Here the first term describes the QD-field interaction and the second term adds

population relaxation. The interaction Hamiltonian contains the electric dipole
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interaction with the radiation field and we give it in the interaction picture here:

Hint =− ~ΩU †0 (t)
(
e−iφ |2〉 〈1|+ eiφ |1〉 〈2|

)
U0 (t) cosωLt . (2.5)

The radiation field drives transitions between the QD ground and excited states

and the Rabi frequency Ω describes the rate. It is linked to the amplitude of the

radiation field E and the dipole matrix element D12 = 〈1|x |2〉 (here for a field

polarised along x) as

Ω =
|D12|E

~
.

With interaction operator U0 (t) = e−iω2t |2〉 〈2|+ e−iω1t |1〉 〈1|, where ~ω1,2 corre-

spond to the energies of ground and excited states, and ω = ω2−ω1 the interaction

Hamiltonian becomes

Hint =− ~Ω

2

(
eiωt−iφ |2〉 〈1|+ e−iωt+iφ |1〉 〈2|

) (
eiωLt + e−iωLt

)
. (2.6)

Multiplication of the two brackets on the right-hand side yields four terms, two

of which oscillate at the difference frequency ± (ω − ωL), and two oscillating at

the sum frequency ± (ω + ωL). Discarding of the latter two in the rotating wave

approximation and writing the difference frequency as ∆ we arrive at the final

interaction picture Hamiltonian:

Hint =− ~Ω

2

(
e−iφ |2〉 〈1| ei∆t + eiφ |1〉 〈2| e−i∆t

)
. (2.7)

For the relaxation terms in Eq. (2.4) we assume for now just the excited state

lifetime T1. The matrix γρ+ ργ then becomes

γρ+ ργ =

(
0 ρ12

T1
ρ21

T1

2ρ22

T1

)
. (2.8)
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Using Eq. 2.7 and Eq. 2.8 in Eq. 2.4 we evaluate the density matrix elements’

equation of motion:

˙ρ12 = i
Ω

2
e−i∆t (ρ22 − ρ11)− ρ12

2T1

(2.9)

˙ρ22 = i
Ω

2

(
ei∆tρ12 − e−i∆tρ21

)
− ρ22

T1

(2.10)

With the substitution ρ̃12 = ei∆tρ12 we can take out the oscillating factors. Fur-

ther, we include pure dephasing processes phenomenologically by replacing 2T1

in Eq. (2.9) with T2. Then the equations of motion are equivalent to the Bloch

equations derived for nuclear magnetic resonance of spin 1/2 systems [73] and

hence called the optical Bloch equations :

˙̃ρ12 = i
Ω

2
(ρ̃22 − ρ̃11)− ρ̃12

(
1

T2

− i∆
)

(2.11)

˙̃ρ22 = i
Ω

2
(ρ̃12 − ρ̃21)− ρ̃22

T1

. (2.12)

Steady-state solutions. To relate the Bloch equations to measurable quan-

tities we have to link the electric field operators for QD emission to the density

matrix elements. To this end we introduce the transition operators first.

σ− = |1〉 〈2| (2.13)

σ+ = |2〉 〈1| (2.14)

The time dependence of their expectation value follows

〈σ− (t)〉 = ρ̃21e
−iωLt . (2.15)

The positive frequency part of the electric field operator is proportional to the

lowering operator and defined as

E+
(
r, t̂
)

=
eω2esc ·D12

4πε0c2r
σ−
(
t̂
)
. (2.16)
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t̂ is the retarded time and esc the polarisation vector of the scattered field. Mea-

suring the intensity of the scattered light is proportional to the single-time first-

order correlation time of the field:

I ∝
∫ T

0

dt
〈
E−
(
t̂
)
E+
(
t̂
)〉
∝
∫ T

0

dt
〈
σ+

(
t̂
)
σ−
(
t̂
)〉

. (2.17)

With

σ+

(
t̂
)
σ−
(
t̂
)

= |2〉 〈2| ,〈
σ+

(
t̂
)
σ−
(
t̂
)〉

= ρ̃22 (2.18)

we find that the intensity is proportional to the steady-state excited state popu-

lation ρ̃22 (t→∞) = ˜ρ22,ss. Taking ˙̃ρ22 = 0, ˙̃ρ12 = 0 in Eq. (2.11) and (2.12) we

find

I ∝ ˜ρ22,ss =
1

2

Ω2

∆2 T2

T1
+ 1

T1T2
+ Ω2

. (2.19)

The scattered intensity is actually composed of two parts1: I = Icoh + Iinc. The

coherent term maps out the magnitude of off-diagonal density matrix elements

as

Icoh ∝ | ˜ρ12,ss|2 =
1

4

Ω2
(
∆2 + T−2

2

)(
∆2 + 1

T 2
2

+ T1

T2
Ω2
)2 . (2.20)

Figure 2.2 (left-hand side) provides a visualisation of the scattering intensity

according to (2.19) for T2 = 2T1 as a function of detuning (in units of 1/ (2πT1))

and square of the Rabi frequency Ω which scales as the power of the exciting

field. The power scale is in units of the saturation power Ω2
sat = 1/ (2T 2

1 ). We see

a saturation of the scattering intensity towards a steady-state population of 1/2,

and at the same time a broadening of the scattering response (power broadening)

1This can be seen in the quantum mechanical Langevin-Bloch equations which include a
noise term. The noise term separates the spontaneous, incoherent emission originating from
the influence of vacuum fluctuation on the QD dipole motion [69] from the coherent response
of the dipole to the radiation field.
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Figure 2.2: Plots of the total scattering intensity (left) and coherent fraction of the
radiation (right). The linewidth is given by 1/ (2πT1) and the saturation power is
proportional to Ω2

sat = 1/
(
2T 2

1

)
.

as a function of excitation power. The plot on the right side shows the coherent

fraction Fcoh = Icoh/I with the same parameters. Towards zero power, or strong

detuning, the coherent part dominates the scattering. We assumed T2 = 2T1 for

the two plots, which corresponds to an absence of pure dephasing. We illustrate

the effect of pure dephasing on the coherent and incoherence intensity parts in Fig.

2.3 for the resonance condition (∆ = 0). Panel a shows the power dependence of

the coherent fraction for T2 = 2T1 (no pure dephasing) as blue curve, the green

curve is for T2 = T1, while T2 = 0.5T1 for the red curve. In the right panel we

show the total scattering intensity (black) together with the incoherent (blue)

and the coherent (green) parts for a dephasing time T2 = T1. The coherent part

reaches a maximum at the saturation point, where Fcoh = T2/4T1. It approaches

zero as the power is increased. The sensitivity of the coherent fraction to the

pure dephasing rate makes it a good benchmark for measurements of T2. We

experimentally study the saturation behaviour for a single QD in Chapter 4.
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Figure 2.3: Influence of dephasing time on coherent and incoherent contributions to
the fluorescence. a, coherent fraction for T2 = 2T1 (blue curve), T2 = T1 (green) and
T2 = 0.5T1 (red).b, total scattering intensity (black), incoherent contribution (blue)
and coherent contribution (green) for T2 = T1. The laser detuning is kept to zero
detuning in both panels.

2.2 First-order coherence of resonance fluores-

cence

The first-order coherence of resonance fluorescence is evaluated through the cor-

relation function

g(1) (τ) =

〈
E−
(
t̂
)
E+
(
t̂+ τ

)〉〈
E−
(
t̂
)
E+
(
t̂
)〉 (2.21)

=
〈σ+ (t)σ− (t+ τ)〉
〈σ+ (t)σ− (t)〉

.

The challenge of evaluating g(1) (τ) lies in calculating a two-time expectation

value. The trivial case of τ = 0 gives us

g(1) (0) = 1 . (2.22)

Calculating Eq. (2.22) is made possible with the quantum regression theorem. It

states that if the density matrices of a system (the two-level atom/QD) coupled

to a reservoir (the radiation field modes) are uncorrelated at time t = 0, that

is ρsystem−reservoir (0) = ρsystem (0) ρreservoir (0), then the equation of motion for the

two-time operator expectation values obeys that for the single-time operator ex-

pectation values. In other words, knowing the complete time dependence of the

transition operators 〈σ+ (t)〉 and 〈σ− (t)〉 is sufficient to calculate the first-order
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coherence.

In particular, the equations of motion for the single- and two-time transition

operator expectation values have the general solution [72]

〈σ− (t+ τ)〉 eiωLt+τ = α1 (τ) + α2 (τ) 〈σ− (t)〉 eiωLt

+ α3 (τ) 〈σ+ (t)〉 e−iωLt

+ α4 (τ) 〈σ+ (t)σ− (t)〉 (2.23)

〈σ+ (t)σ− (t+ τ)〉 eiωLt = α1 (τ) 〈σ+ (t)〉+ α2 (τ) 〈σ+ (t)σ− (t)〉 eiωLt (2.24)

+ α3 (τ) 〈σ+ (t)σ+ (t)〉 e−iωLt

+ α4 (τ) 〈σ+ (t)σ+ (t)σ− (t)〉 (2.25)

Similar expressions hold for 〈σ+ (t+ τ)σ− (t+ τ)〉 and 〈σ+ (t)σ+ (t+ τ)σ− (t+ τ)σ− (t)〉.
In the two-time correlation function above the expectation values of the α3 and

α4 vanish. Noting the relation between transition operator expectation values

and the density matrix elements from (2.18) and that

〈σ− (t)〉 =ρ̃21e
−iωLt , (2.26)

we conclude that a knowledge of the time evolution of the density matrix elements

ρ̃12 (t), ρ̃22 (t) allows us to evaluate g(1) (τ). Both derivation and the final solution

for ρ̃12 (t), ρ̃22 (t), including finite detuning ∆ and pure dephasing γp, are lengthy.

For reference, a solution using Laplace transform was published by Torrey1 [76]

and we will not recreate it here. If we are interested in the stationary limit, that

is, the steady-state first-order correlation function, we can take t → ∞ and use

the steady-state solutions to the optical Bloch equations in Eq. (2.25). From the

first-order coherence g(1) (τ) the emission spectrum follows directly as

S (∆ν) ∝
∫ ∞

0

dτ
〈
E− (τ)E+ (0)

〉
e−i∆ντ + c.c (2.27)

Explicit expressions for g(1) (τ) and S (∆ν) are given in the Chapter 4 (Eq. (4.4)

and (4.5)) and compared to the experimental measurements of QD resonance

1The original manuscript contains a number of typographic errors, for a corrected version
see, for instance, Ref. [74], which contains only one mistake [75].
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fluorescence.

2.3 Second-order coherence of resonance fluo-

rescence

The second-order coherence of resonance fluorescence is defined by the second-

order correlation function

g(2) (τ) =
〈E− (t)E− (t+ τ)E+ (t+ τ)E+ (t)〉

〈E− (t)E+ (t)〉2
(2.28)

=
〈σ+ (t)σ+ (t+ τ)σ− (t+ τ)σ+ (t)〉

〈σ+ (t)σ− (t)〉2
.

Without the quantum regression theorem we can again only find the τ = 0 value:

g(2) (0) = 0 , (2.29)

since σ+ (t)σ+ (t) = |2〉 〈1| |2〉 〈1| = 0 (and similarly for σ− (t)σ− (t)).

The formal derivation of the intensity correlation function follows the one outlined

above for the field correlation function. However, we can arrive at the same

result with a bit of physical insight. The experimental configuration relating

to the intensity correlation function we are usually interested in consists of the

time-resolved detection of a second photon conditioned on the detection of a first

photon. A sketch of the experimental arrangement is provided in Fig. 2.4. The

detection of the first photon projects the QD two-level system into the ground

state. Measuring the averaged probability of photon detection at a subsequent

time just maps out the excited state population

g(2) (τ) ∝ 〈σ+ (τ)σ− (τ)〉 = ρ̃22 (τ) (2.30)

for the condition that ρ̃22 (τ = 0) = ρ̃12 (τ = 0) = 0. The normalisation is given

by the steady state value of the excited state population. Using Torrey’s solution
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to obtain the time evolution of ρ̃22 we find

g(2) (τ) = 1− e−η|τ | ×
(

cos (µ |τ |) +
η

µ
× sin (µ |τ |)

)
, (2.31)

where

η =
1

2
×
(

1

T1

+
1

T2

)
,

µ =

√
Ω− 1

4
×
(

1

T1

− 1

T2

)2

.

Figure 2.4 illustrates the three common interferometer types (used also in this

thesis) to measure first- and second-order coherence, together with examplary

curves for a strongly resonantly (∆ = 0) driven two-level system. Panel a shows

a cavity with a tunable mirror: a Fabry-Perot interferometer to record spectra.

Panel b displays a Michelson interferometer for first-order coherence measure-

ments, whereas panel c shows a Hanbury-Brown and Twiss interferometer for

intensity correlation measurements. The setups will be discussed in more detail

in section 3.4. The oscillations in the g(1) and g(2) curves in panels b and c are due

to Rabi oscillations of the two-level system. The modulation of the fluorescence

intensity due to the coherent oscillations gives rise to a three-peaked spectrum,

the Mollow triplet - see panel a, where the sidebands are separated from the cen-

tral peak by the Rabi frequency. Note that in the spectrum we have omitted the

elastic contribution for simplicity.
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Figure 2.4: Schematics of optical interferometers to measure first- and second-order
coherence (top) with examples of corresponding spectra/coherences (bottom). The
bottom curves are simulations for a coherent two-level system and the abscissa is made
dimensionless by normalising to Γ = 1/T1. a, Fabry-Perot interferometer. b, Michelson
interferometer. c, Hanbury-Brown and Twiss interferometer.
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Chapter 3

Experimental setup and

techniques

In this chapter we introduce the experimental setup and experimental techniques

used in the following chapters. In the flow-chart 3.1 we attempt to give an

overview and a quick summary. The diagram represents the techniques (and

equipment) available in the lab. The confocal microscope with the QD sample

forms the central part of the setup and will be described first. We briefly discuss

the basics of confocal microscopy and microscope design and then follow the de-

velopment from QD wafer to a Schottky diode device where the QD charge can

be controlled using external electric field. Optical characterisation using above

bandgap optical excitation as well as resonant spectroscopy are introduced in this

context and we discuss the use of numerical aperture enhancing solid immersion

lenses (SILs) to improve photon extraction. The properties and working prin-

ciples of the optical interferometry techniques employed in the detection of QD

fluorescence are covered at the end of the chapter.

3.1 Confocal microscopy

The central piece of the experimental apparatus consists of a confocal microscope

that allows optical addressing and collecting the fluorescence from single QDs,

which are held at, or close to, the liquid helium temperature of 4.2 K. Two
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Figure 3.1: Summary of experimental setup and techniques. The optical excitation
column on the left displays which laser wavelengths are available and what they are used
for. The detection column summarises detection instruments and techniques, grouped
according to the nature of the detection. cw: continuous wave.

confocal microscope setups were used in this thesis, one in conjunction with a

liquid helium flow cryostat (Oxford Instruments MicrostatHires) and the other

one attached to a liquid helium bath cryostat (similar to the attocube attoliquid

system). The flow cryostat was used for QD wafer and sample characterisation,

while long-term experiments were all performed with the bath cryostat system.

However, the working principle is identical in both cases, so we will start with

the general features.

Figure 3.2 provides a sketch of a confocal microscope setup. First, the microscope

head and the sample need independent motional degrees of freedom. In the case

of the flow cryostat setup, the sample is kept stationary, while the microscope sits

on three stacked linear direct drive stages (PI 405.DG for lateral displacement, PI

451 for lifting). For the bath cryostat, the microscope is attached to the cryostat

and the sample is positioned on piezoelectric slip-stick xyz-positioners (attocube

ANPxyz101). The microscope provides four degrees of freedom in each arm to

allow for accurate alignment of the excitation beam and efficient fibre coupling

in the collection arm. As the microscopes are used for resonant spectroscopy, we
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Figure 3.2: Confocal microscope with sample. Sample and microscope head can be
moved independently from each other so that different positions on the sample surface
are in focus. The confocal points in excitation (horizontal) and collection (vertical)
arm are given by single-mode optical fibres (SMF). A beamsplitter (BS) with a high
transmission to reflection ratio combines and separates the paths

cannot use dichroic mirrors to combine/separate excitation and collection paths.

In order to minimise photon loss in the collection path (vertical arm in Fig.

3.2) the beamsplitter is strongly unbalanced, typically with a transmission to

reflection ratio of ∼10:1. Single-mode fibres (SMF) are used for input and output

to provide single mode beams and rejection of background light. Polarisers and

waveplates can be inserted into each arm. In the case of the flow cryostat setup,

the objective lens (Mitutoyo 50x M Plan APO NIR) is kept at room temperature

outside the cryostat housing and at liquid helium temperatures inside the bath

cryostat (Thorlabs C110TME-B or C240TME-B). The bath cryostat system is

illustrated in greater detail in Fig. 3.3. In panel a we identify the confocal

microscope elements discussed before (see sketch in Fig. 3.2) and highlight a few

additional features. Panel b shows the part of the microscope that is kept at

cryogenic temperatures during experiments, namely objective lens, sample, and

positioners. To avoid mechanical failure of the objective lens during cooldown and

at cold, we use single-piece aspheric lenses. The numerical aperture (NA) of 0.4

and 0.5 is chosen to match the light extraction with a zirconia super-hemispherical

solid immersion lens (discussed later this chapter). Progressive close-ups of the

sample in panels c and d show both sets of gates and a zirconia solid immersion

lens glued to the sample surface.
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Figure 3.3: a, Photograph of helium bath cryostat insert and microscope when pulled
out of cryostat. In comparison to the sketch in Fig. 3.2 an imaging camera (Watech
120N+) is included here. Rotational and translational elements are highlighted in both
microscope arms. A photodiode (Thorlabs SM1PD1A) measures transmitted power of
the excitation laser, enabling power calibration and stabilisation. The cryostat insert
contains the objective lens, sample and sample positioners, held together in a 30mm
cage system (see b). It is sealed off from the outside and provides optical access through
a BK-7 glass window at the top. b, Photograph of bottom end of the microscope cage
system when pulled out of the insert. The location of objective lens, sample and posi-
tioners are indicated by the arrows. Teflon strips (white) keep electric connections in
place, out of the way of the optical beam and the outside edges of the cage. In order to
cool down the insert (with sample etc.) is first vacuum pumped to ∼ 10−5 mbar and
then filled with 20-25 mbar of helium gas. This helium gas provides heat exchange with
the outside and cools sample and positioners to liquid helium temperatures when the
insert is half-way immersed in helium in the bath cryostat. c, Close-up of a contacted
QD sample with zirconia SIL. Gold wirebonds connect to the Schottky contacts on the
top-right side. On the bottom-left, the bigger Ohmic contact are visible. d, Close-up
of the Schottky contacts and bondpads. The light blue structure stems from the semi-
transparent titanium gate that forms the Schottky contact. At the top, an additional
layer of titanium and gold provides pads for wirebonding.
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3.2 QD Sample

3.2.1 General considerations for sample design

The QD electronic level structure offers transitions to excited states that can be

optically addressed and scatter single photons in response. It is via these sin-

gle photons that information is obtained, e.g. about the spin state, and acting

as flying quantum bits, entanglement can be generated or transferred to equiv-

alent systems. As such the QD sample design is driven by efforts to maximise

photon extraction. This is particularly crucial as the QDs are buried in a high

refractive index semiconductor (GaAs, n∼3.5) and total internal reflection at

the semiconductor-air interface limits outcoupling of photons optics to ∼ 2%.

Approaches to ameliorate this problem are nicely illustrated in Ref. [77]. One

approach is to manipulate the local density of optical states, such that light is

preferentially emitted into spatial modes that allow for good collection. This can

be achieved by embedding the quantum dots into microcavities during semicon-

ductor growth and post-processing. An alternative approach uses geometric op-

tics, mainly relying on solid immersion lenses (SILs). Here the emitter properties

are not modified; the strategy is to minimise total internal reflection by employ-

ing spherical interfaces. Cavity solutions can be processing-intensive, while the

second approach is very simple and offers broadband improvements at the same

time. The SIL approach is used throughout this thesis and will be explored in

more detail in section 3.2.4 of this chapter.

To go from a QD sample to a useful QD device we have to add an element of con-

trol. Attempting to control individual spin qubits requires the ability to control

the charge state of individual QDs first, making this a very desirable feature. We

also note that using QDs as single-photon sources under resonant excitation may

not be straightforward with samples without charge-control [78]. Charge-state

control can be partly achieved by appropriate doping [52], i.e. by incorporating

additional charges closeby and hoping these will be trapped in QDs. This is a

probabilistic process, which does not guarantee QD charging stability. A more

flexible solution was pioneered by Warburton et al. [11]. Here, the QD is placed

between two electronic gates, one of which acts as electron reservoir and the po-
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Figure 3.4: QD sample structure. Left: Colour-coded structure of the QD wafer ‘Chef
2’. Layer thicknesses are indicated to the right of the sketch (not to scale). The Si
doping concentration in the back gate is nominally 4 · 10−18 cm−3. DBR: distributed
bragg reflector. Right: Schottky diode structure with zirconia solid-immersion lens
(Zr SIL). An ohmic contact is formed with the back gate through GaAs etching and
evaporating and annealing gold-germanium-nickel (AuGeNi) on the sample. The top
gate is a Schottky contact made of a thin titanium film.

tential difference between them determines the potential of QD electronic levels

with the respect to the Fermi level.

3.2.2 The ‘Chef 2’ sample

We will illustrate the concepts introduced above on the example of the sample

used throughout most of this thesis. The wafer was grown by Maxime Hugues

at the National Centre for III-IV Technologies in Sheffield and dubbed ‘Chef 2’.

A schematic of sample structure including layer thicknesses is shown on the left-

hand side of Fig. 3.4. The right-hand side displays a sketch of the device after

processing, highlighting the Schottky diode section. A zirconia solid immersion

lens glued on to the sample surface enhances focussing and photon collection.

Controlling the potential difference between top and bottom gate allows us to

control the charge state of the QDs inbetween. Figure 3.5 illustrates the princi-

ple of this charge tuning (for electrons) by looking at the electronic band structure

of the Schottky diode under different bias voltages. z denotes the growth direc-
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Figure 3.5: QD Charge control in Schottky diodes. Left: Electronic band structure
of the QD diode heterostructure under zero applied bias. The Fermi level (Ef) is below
the first QD electronic state, so the QD is uncharged. Right: Under forward bias the
first QD level shifts below the Fermi energy and an electron tunnels in from the back
contact.

tion. The layer materials are indicated in the same colour code as before. The

back contact is GaAs heavily n-type doped with electron-donating silicon atoms

replacing gallium in GaAs. The Fermi level Ef is then pinned to just below

the GaAs conduction band edge in the n-doped layer and, at zero applied bias,

halfway in between the conduction and valence band at the Schottky contact.

The electronic levels for having the QD occupied with 1 or 2 electrons are indi-

cated. Applying a gate voltage effectively shifts the QD energy levels with respect

to the Fermi energy. Conduction band electrons from the Fermi sea in the back

contact can only tunnel into the quantum dot if unoccupied states are below or

within kT of the Fermi energy Ef . Due to its small size, and consequently a small

capacitance, and its discrete energy levels a charging energy ∆Echarging is needed

to place another electron into the QD [79]. For liquid helium temperatures (∼
4 K) ∆Echarging � kT , such that the number of electrons in the dot is well de-

fined as long as the Fermi energy is not aligned with the QD level (within kT

of the energy level). This effect is known as quantum Coulomb blockade. Apply-

ing a forward bias, electrons are added one by one. These effects can be clearly

seen in photoluminescence studies, where the energy of emitted photons changes

abruptly as the number of resident electrons is changed [11; 80]. The electric field
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across the diode also shifts the QD exciton energy levels via the DC Stark effect,

which was introduced earlier (section 1.3.3). A bias-dependent map of the QD

photoluminescence from a ‘Chef 2’ device is discussed later in this chapter.

From the band structure diagrams in Fig. 3.5 we can also understand the function

of the other layers in the diode. Going up in z-direction from the back contact,

the following GaAs layer provides the tunnel barrier between the Fermi sea in

the back contact and the QD layer (cf. labels in Fig. 3.4). The barrier thick-

ness determines the tunneling time for an electron in and out of the QD. Given

the exponential tunneling time dependence on thickness this can stretch from

sub-nanosecond to second timescales. For a different sample with a nominally

identical barrier thickness of 35 nm a tunnelling time ≤ 0.1 s was deduced from

spin relaxation measurements [26]. For the ‘Chef 2’ sample, a similar measure-

ment suggests microsecond tunneling times. This difference may be due to the

dopant diffusion in the back contact which varies with concentration. Next, the

InAs QD layer is covered with 10 nm of GaAs 1. Following the GaAs cap, 50

nm of AlGaAs form a barrier (due to the larger bandgap) for carriers that could

tunnel from the Schottky contact into the QD layer. Finally, the top GaAs layer

provides a cap that prevents the AlGaAs from oxidising.

The distributed Bragg reflector (DBR, see Fig. 3.4) consists of 20 layers of

GaAs/AlGaAs with thicknesses such that reflection in the spectral region around

970-980 nm is enhanced. The relative position of the QD layer with respect to

the DBR places the QDs in an antinode of the reflected field.

3.2.3 QD device processing

Once a sample structure is designed, growth is carried out externally. For the

duration of this PhD work samples were purchased from the EPSRC National

Centre for III-V Technologies in Sheffield. We are grateful to Maxime Hugues

and Edmund Clarke who performed the growth there.

1The influence of this capping layer thickness has been subject of a recent study by Houel
et al. [81]. The authors observe strong (several linewidths) fluctuations of the QD resonance
frequency for 30 nm capping thickness, while this feature is strongly reduced for a capping
thickness of 150 nm. The spectral jumps are attributed to charges trapped at the interface of
capping layer and the following AlGaAs barrier. The capping layer thickness of 10 nm in our
devices is chosen to avoid bound states at the QD energy levels at the GaAs/AlGaAs interface.
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Figure 3.6: Schematic of QD photoluminescence through above bandgap excitation.
When the energy of the exciting laser is greater than the GaAs bandgap, electrons are
promoted from the valence to conductance band, leaving behind holes. These electron-
hole pairs quickly diffuse into the lowest available energy configuration, e.g. the s-shell
of a quantum dot, and recombine radiatively.

The QD density required for different applications (e.g. QD lasers vs. single QD

spectroscopy) varies widely, and achieving a specific uniform density in growth

requires careful calibration. For the low density samples we need for our research

the rotation stop method is employed to provide some flexibility on the QD

density. With this method the standard rotation of the wafer during growth

is interrupted at the start of the InAs deposition, such that the InAs density

and consequently the QD nucleation density varies across the two-inch wafer.

Typically it varies from zero QDs in several mm2 at one edge to many tens per

µm2 or higher at the opposite end. In between there is a strip where the density

is appropriate for single QD research. Hence the first step in producing a good

QD device is to identify the region of appropriate density.

3.2.3.1 QD photoluminescence

Characterisation of new wafers and sample processing relies on the ability to

generate and detect QD fluorescence in a straightforward manner. Fortunately

there is a very convenient method: photoluminescence. Excitons can be gener-

ated in abundance in the direct bandgap material GaAs by excitation at above

bandgap energies. The electron-hole pairs relax quickly into the lowest available

energy configuration and recombine radiatively. If quantum dots happen to be in

the spatial vicinty, excitons can fall into these potential traps, giving rise to QD
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Figure 3.7: Investigation of QD density for a wafer grown with the rotation stop
method. The top left image is taken from the wafer delivery note from the EPSRC
National Centre for III-V Technologies in Sheffield. It is annotated to link the spatially
resolved photoluminescence maps shown to the right and below to locations on the
wafer.

photoluminescence on recombination (see Fig. 3.6). In our case, we employ a

diode laser at 785 nm. Laser scattering and luminescence from the GaAs and the

wetting layer quantum well is filtered out with a longpass filter (e.g. Thorlabs

FEL0900)1.

3.2.3.2 Sample density check

Investigating the QD density starts by cleaving a ∼ 6 mm wide strip off the

wafer, either along the major or the minor wafer axis, roughly following the

expected density gradient. After cooling down the strip in the flow cryostat

1Alternatively, exciting the InAs wetting layer provides an efficient venue for QD photolu-
minescence generation.
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we employ above bandgap excitation and deliberately decollimate the 785 nm

laser before the microscope objective, such that a large sample area (>100 x

100 µm2) is illuminated. Imaging the sample surface through a 900 nm longpass

filter reveals spatially localised fluorescence from individual QDs. Figure 3.7

displays on the top left a room temperature photoluminescence map supplied by

EPSRC National Centre for III-V Technologies. The wavelength of the maximum

intensity peak of the photoluminescence spectrum is colour-coded as function

of position on the wafer. The map is annotated to illustrate the QD density

measurements performed in our lab: The direction of the QD density gradient

is indicated by the white arrow, the darker area shows the sample strip that

was cleaved for analysis and the lettered dots show the approximate position of

selected spatial luminescence maps. Points A and E are approximately 20 mm

apart. For location E the QD density is in the region of 10 QDs/µm2. At this

density, individual QDs can still be easily addressed individually using resonant

excitation, as they emit at different wavelengths. However, experiments showed

that the QD optical properties suffered. Spectral jumps and strong spectral

diffusion (evident in broad absorption lineshapes) were typically observed for

the QDs investigated (∼ a dozen). For densities of one to a few QDs per µm2

(comparable to location D in Fig. 3.7) these problems are less severe, here about

half of the QDs exhibit jumps and diffusion. QD samples with densities below

1/µm2 are typically clean, with absorption linewidths close to the radiative limit

at low excitation power and hence preferred for measurements going beyond above

bandgap photoluminescence.

3.2.3.3 Cleanroom processing

Once the location of suitable QD density on the wafer is established, pieces of

approximately 6 x 5 mm2 size are cleaved and prepared for processing in the

cleanroom of the Semiconductor Physics group at the Cavendish Laboratory.

The sample size is determined by the size of mask features. A margin of about 1

mm is necessary to avoid problems with photoresist edge beads. The processing

steps mostly follow standard procedures for high electron mobility Hall-bars. We

give a brief outline of the procedure here.
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1. Ohmic contacts. The Ohmic contacts require annealing, so they have to

be done before other metal gates. After cleaning, the positive photoresist

Shipley 1813 is deposited on the sample. Spinning the sample (5500 RPM

for 30 seconds) distributes the photoresist evenly across the sample (save

the edge beads), with a thickness of ∼ 1.3 µm. After baking for 60 seconds

at 115◦ C to harden the resist, the sample is exposed under the appropriate

mask section (the one containing the ohmic contact shape). Developing

uses MF-319 for about 2.5 minutes. To get a contact to the buried n-doped

layer, we etch the sample (i.e. the now developed area) roughly 3/4 the

distance to the n-doped layer using GaAs etch. The sample is cleaned in

a 10 % HCl solution before thermal evaporation of about 200 nm of gold-

germanium-nickel (AuGeNi). Following the lift-off, annealing is achieved in

a rapid thermal annealer at a temperature of 370 ◦C.

2. Schottky gates. Preparations for the photolithography are similar to be-

fore, but the photoresist is baked at 90◦ C. After exposure, the sample is

soaked in chlorobenzene for 2 minutes; this produces sharper edges in the

development.

Photon collection happens through the Schottky gate, so this needs to be

as thin as possible. The evaporation of nominally 5 nm 1 titanium is per-

formed by cleanroom staff (thanks are due to Graham Winiecki and Melanie

Tribble of the Semiconductor Physics group) using electron beam physical

vapour deposition. Due to the smaller feature size the lift-off process usu-

ally requires sonicating the sample very briefly (and carefully). The shape

of the Schottky pads can be seen in Fig. 3.3 d.

3. Schottky contacts. Wirebonding to a 5 nm thin layer of titanium is more

than challenging. To enable gold ball wirebonding, another deposition of

titanium and gold is needed at the location of the bondpad. This area is

shaded golden in the photograph in Fig. 3.3 d. The photolithography steps

are identical to the ones for the Schottky gates. The evaporation is done

in a thermal evaporator, typically 20 nm of titanium are deposited first,

followed by 40 nm of gold. The additional titanium improves the adhesion

1Usually ends up being ∼ 6 nm thick, occasionally also 30 nm . . .
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Figure 3.8: I-V characteristics of two QD diodes at room temperature. The left
photograph represents a ‘good’ gate, the one on the right is a ‘bad’ gate.

of the gold layer.

4. Diode behaviour check. Before proceeding to the final steps of mounting

the sample on the chip carrier and wirebonding, the I-V characteristics of

each gate are checked at room temperature with a curve tracer. Figure 3.8

shows two photographs of the curve-tracer in the cleanroom. The horizontal

scale is set to 0.5 V per division, the vertical scale is 50 µA per division. The

photograph on the left displays a ‘good’ I-V curve. In forward bias, current

starts passing at around 0.3 V. The photograph on the right (example of a

bad gate) shows some Ohmic character, indicating leakage current between

the gates.

5. Packaging. Sample processing is completed by mounting the sample on

a leadless ceramic chip carrier (using silver paste as glue) and wirebonding

the working gates to the metalised castellations on the chip carrier using
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a goldball bonder1. The wirebonds for Schottky and Ohmic contacts are

visible in Fig. 3.3.

3.2.3.4 Gate check at 4K

It is advisable to check the QD response to biasing the gates in the flow cryostat

before placing it (semi-permanently) in the bath cryostat. This should show that

devices with ‘good’ I-V curves (see Fig. 3.8 left) influence radiative recombination

rates in accordance with the band diagram in Fig. 3.5. Figure 3.9 displays six

spatial photoluminescence maps under increasing bias. Starting in reverse bias,

we can make out two clearly separated areas on the sample surface (red lines show

borders as guide to the eye). In reverse bias excitons ionise (electrons tunneling

into the back gate) faster than radiative recombination in QDs can take place,

so we do not expect luminescence. The dark area in the map for -150 mV bias

is covered by the titanium gate, whereas QD emission is visible from regions not

covered by the gate. Under increasing forward bias, QD emission is visible in the

gated area indicating that radiative recombination occurs faster than tunneling

timescales, whereas the ungated area looks unchanged. For this sample, emission

is most intense around 450 mV bias; here most QDs are occupied by one or two

electrons. At high forward bias, current starts passing between the n-doped layer

and the Schottky gate and emission quenches.

3.2.4 Solid immersion lenses

The problem of efficient light extraction from QDs was already mentioned at

the start of this section, together with the approach employed: solid immersion

lenses. The solid immersion microscope was introduced by Mansfield and Kino

in 1990 [82]. In analogy to liquid immersion, e.g. in oil, the idea is to fill the

objective space with a material of high refractive index nSIL, and thus increase

the numerical aperture of the microscope to NA = nSILsin(θ), where θ is the

angular semi-aperture in the objective space. For optical studies of QDs there

1The gold wire can easily rip off the bondpad (and part of the sample surface) instead of
sticking to it, rendering a week or two (and a precious piece of sample) useless. Patience and
careful calibration of the bonder parameters are recommended.
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Figure 3.9: Influence of bias across the QD diode on the photoluminescence intensity
under above bandgap excitation. The applied bias is displayed in the top left corner
of each image, with positive voltages corresponding to forward bias. The edges of a
Schottky gate are indicated by red lines. Only areas under the Schottky gate react to
the bias.
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Figure 3.10: Illustration of solid immersion lens geometries, reproduced from The
solid immersion lens by Kino [83]. The supersphere geometry is also known as Weier-
strass geometry.

are two beneficial effect: improved focusing and light extraction.

In order to fill the objective space fully, spherical surfaces separating the immer-

sion material from objective lens are desirable. Focal points form at two locations

in spheres of high refractive index, so SILs come in two standard geometries which

are illustrated in Fig. 3.10. For features directly underneath the planar surface of

a hemispherical SIL the lateral magnification increases by nSIL due to the wave-

length being λSIL = λ0/nSIL, as does the NA, while the size of the focal spot is

reduced by a factor 1/nSIL compared to the vacuum case. Super-hemispherical

SILs (SSILs) ideally increase the magnification and the NA by n2
SIL (with nSIL

being the upper limit of the NA) while the spot size should decrease by 1/n2
SIL.

Beating the (vacuum) diffraction limit is possible with SILs and this has been

demonstrated in a number of works [84], see Ref. [85] for a review.

The important advantage of using SILs for QDs is a reduction in total internal

reflection, where an order of magnitude increase in photon extraction is predicted

[77; 86], e.g. going from 1-2 percent without SIL to 30 percent with a GaAs SSIL.

Successful implementations of SILs for QD spectroscopy and other nanophotonic

applications have been reported in a number of works [87; 88; 89]. Using a high-

index glass SIL and a GaA SSIL, respectively, a resolution of 350 nm (for λ=950

nm light) [90] and an increase in transmission contrast by a factor of seven [91]
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were reported.

In practice, the achievable reduction in focal size and the NA enhancement de-

pend on the optical quality of the SIL and the contact to the object. Simulations

suggest that the size of any air gap between the SIL and the target material

strongly influences focusing abilities [83; 88], as the evanescent part of the fo-

cused spot does not contribute to the intensity at the object location anymore.

For less than 10 % deviation from the ideal case, the air gap should be on the

order of λ/5. For some materials it has been possible to integrate the SIL directly

into the device (most notably for diamond colour centres, see Refs. [92; 93] for

example), thus eliminating the challenge of creating good optical contact, but

this has not been achieved yet for GaAs.

However, even for imperfect contact with the sample SILs, and SSILs in partic-

ular, funnel QD emission that made it out of the semiconductor and reduce the

NA necessary to collect it. It should also be pointed out that SSILs are highly

achromatic [94] while SILs do not suffer from this.

In this thesis we employ 2 mm diameter SSILs made from cubic Zirconia. The

refractive index of n ∼ 2.17 is higher than that of most common ‘optics’ materi-

als. In terms of refractive index, GaAs SSILs would be preferable, but these are

not readily available. The Zirconia SSILs are glued on the sample surface using a

transparent mounting compound 1. The contact to the sample surface is checked

by focusing a laser through the SIL and observing the reflection from the focal

spot at the sample/SIL interface. Two distinct reflections are visible for air gaps

on the order of 1 µm and bigger. Airgaps of a few hundred nm and smaller cannot

be measured easily. Typically we see an enhancement in collection efficiency by

a factor 5-10 in the flow cryostat system with an objective NA of 0.42.

Figure 3.11 illustrates the concepts of increased magnification and imaging with

SILs with experimental (and hence flawed) data. A Zirconia SSIL and a GaAs

SSIL are mounted on the same test sample and we image QD fluorescence in the

flow cryostat setup with a 0.42 NA objective lens (Mitutoyo M Plan Apo NIR).

The QDs can be approximated as point-sources, so imaging them is equivalent

to measuring the point-spread-function (PSF) of the microscope. Fig. 3.11a dis-

1Obtained from the glass workshop in the Cavendish Laboratory. The exact product is not
known, but it is similar (or identical) to the ‘KLEER-MOUNT’ acrylic resin from MetPrep.
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plays this effective PSF for a QD not covered by either SIL. The linecuts through

the image reveal a full-width-at-half-maximum (FWHM) of 8 pixels, which cor-

responds to a physical width of ∼ 1.4 µm. For a diffraction limited microscope

and a point-source emitting at 950nm we would expect a PSF of ∼ 1.15 µm.

The discrepancy is probably due to the fact that the microscope objective is not

corrected for focussing through the glass cover of the flow cryostat (0.5 mm thick-

ness). Figs. 3.11b and 3.11c show images for QDs under a Zirconia and a GaAs

SSIL, respectively. Using SSILs the image should be magnified by n2
SIL, so we

divide the measured FWHM in pixels by n2
SIL to extract the PSF. The results

are summarised in Fig. 3.11d and compared to the ideal case. We are quite a

bit off the ideal case (about a factor of three). Reasons for this are likely to be

the optical contact at the SIL/sample interface where an air gap of a few µm

was measured, and chromatic dispersion1. However, in both cases we still reach

a PSF equivalent to that of an ideal system (without SIL, but) with an NA of 1.

We note that not reaching the diffraction limit also implies that the microscope

alignment is less sensitive to movement of the sample with respect to the micro-

scope - an advantage in liquid helium cryostats which need refilling or continous

flow.

The addition of a SSIL with good optical contact to the gated sample con-

cludes the device processing and preparation part. Finished samples can then be

cooled down in the bath cryostat for resonant studies on single QDs. The relevant

techniques are described in the following section.

3.3 Single QD spectroscopy

Three optical techniques are used for spectroscopy and time-resolved measure-

ments: photoluminescence (PL), differential transmission/reflection (DT/DR)

and resonance fluorescence. Characterisation of the optical transitions of indi-

vidual QDs and QDMs employs all three techniques, where each plays a different

role. The main results of this thesis rely on photon coherence properties and high

measurement bandwidth and are obtained with resonance fluorescence.

1Sampling over a large number of QDs would give a more representative picture, as we
would sample over a range of emission wavelengths at the same time.
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Figure 3.11: Point-spread function (PSF) of confocal microscope with and without
SIL. The PSF is obtained by imaging the fluorescence from a single QD onto a camera
and fitting a Gaussian to the intensity profile in two orthogonal directions. a, PSF for
imaging through air with a 0.42 NA objective. b, PSF for imaging through a zirconia
SIL in Weierstrass geometry (SSIL) with a 0.42 NA objective. a, PSF for imaging
through a GaAs SIL in Weierstrass geometry with a 0.42 NA objective. d, Plot of the
PSF versus the refractive index of the immersing medium. The black points show the
data from a-c, the solid red line displays the theoretical PSF for a diffraction-limited
setup (0.42 NA). The black dashed line shows the theoretical curve for a NA=1. We
assume an emission wavelength of 950 nm here.
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3.3.1 Gated photoluminescence

The process of photogeneration by above bandgap excitation was covered in

3.2.3.1. With the sample processed into a Schottky diode optical transitions

of different charge states can be identified. This is illustrated in Fig. 3.12 where

we present the photoluminescence/gate voltage map of a single QD. The pho-

toluminescence is spectrally dispersed in a 0.75 m monochromator (Princeton

Instruments SP2750) using a 1200 groves/mm grating and detected with a liquid

nitrogen-cooled charge coupled detector. The electric field across the QD corre-

sponding to the applied bias is given by the top abscissa. Operating far below

saturation three distinct transitions are identified: the neutral exciton transition

X0 and the positively and negatively charged trion transitions X1+ and X1−.

The charges involved in the recombination are indicated next to the data. This

map can be likened to an optical fingerprint of a QD as charging points, emis-

sion energies and splittings between transitions vary for each QD. However, some

features are consistent for all QDs in our samples. Most prominently, the X1−

transition is redshifted typically by 4-4.5nm (∼ 1.3 THz or 5.5 meV) with respect

to the X0 transition. The change of emission wavelength as function of the gate

voltage is due to the DC Stark shift. It is worth noting that here we do not

see a clear transition in gate voltage between different charge ground states, and

the optical transitions overlap considerably in applied bias. The reason for this

overlap is the slow tunneling time for charges in the QD: this may take place

on a many µs timescale, much slower than radiative recombination. Hence the

QD can be optically charged, and we see e.g. X1− emission at a bias where the

QD is empty in its ground state. PL spectroscopy is great in its simplicity, but

has several drawbacks: The resolution is limited to the spectrometer resolution

(∼ 30 µeV for a 1800 groves/mm grating) while the transition linewidth of QD

transitions is typically a few 100 MHz (∼ 1µeV).
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Figure 3.12: Photoluminescence map of a single QD. Sequential charging of the QD
with gate voltage is visible. The linear shift of the emission energy with gate voltage
is due to the Stark effect.

3.3.2 Differential transmission and reflection

Differential transmission and reflection (DT/DR) in the context of QD spec-

troscopy refers to a homodyne detection technique of resonant QD scattering

which offers very high spectral resolution while being experimentally robust at

the same time. Here we will only outline the method and its range of application;

for a comprehensive description see Ref. [95]. The simplifying assumptions made

there do apply in our case. DT and DR use interference of the laser radiation

with the resonantly scattered field from the QD (homodyning) to pick up the

weak QD scattering. If we consider a laser interacting resonantly with a single

dipole transition, such as the X0 transition in the QD, we have the electric field

of the laser EL, the coherent (Rayleigh) scattering from the dipole Ecoh and the

incoherent scattering Einc. Putting the fields on a photodetector in transmission

geometry we measure the intensity of the fields

Idetected = |EL + Ecoh + Einc|2

=IL + Icoh + Iinc + 2< (EL · Ecoh)

+ 2< (EL · Einc) + 2< (Ecoh · Einc) . (3.1)
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In a typical QD experimental system (in the absence of cavities) coupling the

laser field to the QD transition is inefficient, i.e. EL � Ecoh,inc. In this case

the second-order terms Icoh and Iinc are smaller than fluctuations in the laser

intensity and can be neglected. For the cross-terms (the interference terms) we

have to take phase relations and the detector bandwidth into account. Fields

with random phase fluctuations faster than the detector bandwidth will average

to zero and the interference terms will not contribute to measured intensity. This

applies to the cross-term (EL · Einc). However, the interference of laser and co-

herent scattering should be stable due to the fixed phase between them. Still

this term is quite small compared to the laser intensity. To obtain a clean signal

we modulate the cross-term by fast modulation of the gate voltage (few KHz)

such that the QD transition is modulated in and out of resonance using the Stark

shift. The laser intensity term is not affected. Phase-sensitive detection of the

photodetector signal removes the laser intensity term and allows us to measure

the absorption profile of the transition by scanning the laser frequency (or gate

voltage) across the QD resonance.

Experimentally, the photodetector for DT (Thorlabs FDS-1010) is placed directly

underneath the QD sample in the cryostat. For DR we use a fibre-coupled pho-

todetector at room temperature (Femto photoreceiver EO-200). In both cases the

photocurrent is converted to voltage and amplified by typically 108V/A before

demodulation in the Lock-In amplifier (Stanford Research 830 DSP). The spec-

tral resolution is only limited by the spectral stability of the resonant laser (<2

MHz in our case) which is much smaller than the QD linewidth. DT and DR are

homodyne spectral measurements. The measurement bandwidth is determined

by the gate modulation speed which sets a lower bound to the integration time

constant of the Lock-In amplifier and the signal-to-noise given amplifier and lock-

in amplifier specifications. In our setup the modulation frequency is typically ∼
2 KHz with integration times of 10-100 ms.

First QD spectroscopy measurements using this technique were reported in Refs.

[96; 97]. Since then it has become a well-used and important technique in the

quantum dot community, enabling progress in the coherent control of single and

coupled QDs [42] and metrology [24] by providing a resonant (and hence high

resolution) observation tool. Given all the advantages it remains a purely spec-
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troscopic technique. QIP applications require access to resonantly generated pho-

tons, i.e. collection of the QD resonance fluorescence only, where the excitation

laser is suppressed.

3.3.3 Resonance fluorescence

Applications in quantum communication and computation rely on high coherence

indistinguishable photons [98], and the ability to create entanglement between

spin qubits and photonic qubits [2]. This can only be achieved with resonant

excitation and collection of the resonance fluorescence.

Following the first calculations of the resonance fluorescence spectrum by Mollow

[70] in 1969 this direct photon generation method was quickly demonstrated in

atomic beams [99; 100; 101]. Resonance fluorescence is now routinely employed

in optical investigations of atomic gases, single trapped ions and atoms [102]. In

these systems an orthogonal geometry for excitation and collection of the fluo-

rescence can be employed, such that the excitation laser does not make it to the

detector. This is crucial as the fluorescence signal is orders of magnitude weaker

than the laser and both are essentially at the same frequency.

For quantum dots the first attempts replicated the orthogonality of excitation and

detection in a semiconductor environment using waveguide structures to confine

the excitation light to one plane [103; 104] or a one-dimensional waveguide [105].

In our experimental setup we excite and collect both QD fluorescence and laser

scattering along the same path (see Fig. 3.3). The QD transition dipole has a

preferential in-plane orientation, independent of excitation orientation and po-

larisation, therefore we excite in a linear polarisation at ∼ 45 degrees to the

transition polarisation and collect in the orthogonal polarisation. This cross-

polarisation ideally removes all laser at the cost of filtering half of the scattered

QD photons. Since the first demonstration of QD resonance fluorescence with

this method [106] the laser suppression has been improved and is on par with

trapped atom systems [107]. The experimental performance of our setup will be

discussed at the beginning of the following Chapter.

The realisation of techniques to access the resonance fluorescence from quantum

dots has enabled advances in the quantum dot field: the strictly resonant excita-
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tion was shown to reduce photonic decoherence when compared to nonresonant

excitation [108]. Further, taking advantage of the spin-selective QD transitions,

required for spin-based QIP applications, QD resonance fluorescence allowed de-

tailed studies of spin dynamics [26; 109], excitation-induced sideband broadening

[110] and the realization of single-shot spin readout [111], subject of Chapter 7.

The recent demonstration of QD spin-photon entanglement [53; 65] is a further

key achievement, enabled by the ability to access QD resonance fluorescence.

3.4 Quantum optics in the lab: interferometric

measurement techniques

This section explains the basics and the setups used for interferometric mea-

surements. In analogy to the theoretical chapter we take a look at first-order

coherence (time-resolved and spectrally) and second-order coherence. In Fig. 3.1

we already indicated the experimental capabilities and Fig. 2.4 of Chapter 2

illustrated the three common interferometer types used in this thesis. Below we

discuss our particular setups in more detail.

3.4.1 Spectral measurements

Figure 3.13 shows the setup of the Fabry-Perot interferometer (FPI) on the left

side. The interferometer (Exfo TL Laser Spectrum Analyzer) has a free spectral

range of 30 GHz and can be aligned to a finesse of better than 1000 with a trans-

mission of ∼ 25%. Two single mode optical paths are aligned trough the cavity,

one with maximum finesse for the QD fluorescence and one with moderate finesse

(∼ 150) for a reference laser. The job of the reference laser is to stabilise and scan

the cavity across the QD fluorescence spectrum. To this end the reference laser is

frequency-stabilised before entering the interferometer (linewidth < 2 MHz) and

the transmission through the FPI is detected on a photodiode. The measured

transmission feeds back to control the distance between the cavity mirrors, hence

fixing the cavity resonance relative to the reference laser frequency. By scanning

the reference laser frequency we scan the cavity resonance at the same time. For

improved stability during scans the reference laser is further power stabilised in
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Figure 3.13: Setup of Fabry-Perot interferometer (left) and measurement of its resolu-
tion (right). RF: resonance fluorescence, APD: avalanche photodiode, PD: photodiode,
PID: Proportional-Integral-Differential gain controller, SMF: single-mode fibre, MMF:
multi-mode fibre.

the FPI setup. Both stabilisation procedures indicated in Fig. 3.13 employ com-

mercial PID controllers (Standford Research Systems SIM960). The right side

of Fig. 3.13 shows a measurement of the FPI linewidth. Here the signal (QD

RF in the setup) is given by a single mode laser at fixed frequency (linewidth of

a few MHz) and the reference laser scans the cavity resonance across the signal

frequency in steps of 8 MHz. The signal is recorded by a single photon count-

ing avalanche photodiode (APD). The Lorentzian fit to the data, displayed as

red curve, yields a full width at half maximum or equivalently, a spectral resolu-

tion, of 25 MHz. The alignment of the cavity is controlled by three independent

piezoelectric transducers attached to one cavity mirror and as such suffers from

piezo creep. In our setup a finesse greater than 1000 can be sustained for ∼
1 hour (sometimes considerably shorter), then realignment of the piezoelectric

transducers is necessary.

3.4.2 First-order coherence

The first-order coherence of light is related to its spectrum by a Fourier trans-

form, so the information obtained in either measurement should be equivalent.

However, experimentally there are advantages and disadvantages associated with

the specific setups used and both measurement techniques can complement each
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Figure 3.14: Setup and calibration of the Michelson interferometer. Left: The input
signal (QD resonance fluorescence here) is sent through a single-mode fibre (SMF), split
into stationary and moving paths, recombined on the same beamsplitter and coupled
into a SMF connected to an avalanche photodiode (APD). Two shutters (S1, S2) allow
measurements of the intensity in each path. An additional delay is indicated by dashed
lines. Right: Measurement of the visibility of the first-order coherence for a single-mode
laser. The inset displays part of a fringe measurement and the calibration procedure
used to obtain the data points in the main figure.

other.

The setup for the Michelson interferometer is shown on the left in Fig. 3.14. The

signal (QD RF) is divided into two arms by a beamsplitter (nominally 50:50).

One arm is stationary: the signal is reflected back onto itself and coupled into

a single-mode fibre connected to an APD. The mirror on the other arm sits on

a linear stage (Physik Instrumente DG505.6DG) with 17 nm design resolution

and 150 mm travel such that a delay of up to 1 ns can be reached relative to

the stationary arm. An additional delay can be incorporated, indicated by the

dashed path and mirrors, which covers delay times around 2.5-3 ns.

Measuring the first-order coherence of the signal field requires careful alignment:

the reflected/transmitted paths from stationary and moving arm need to be

collinear and spatially overlapping. Non-collinearity results in a phase varia-

tion across the beam (averaging out interference when integrating over the beam

area), while imperfect beam overlap reduces the amplitude of the interference.

A good method of aligning is to use a high coherence laser as signal and project

the recombined beam onto a surface a long way away and observe the fringe pat-

tern that arises through the spatially varying phase difference. Minimising the
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number of interference fringes while keeping the beam overlap one should arrive

at the point where the beam can be completely extinguished by slowly scanning

the moving arm. Coupling the beam into the single mode fibre and recording

the APD signal as the moving arm is scanned then shows the expected sinusoidal

intensity dependence. Assuming an (infinitely) coherent input field the visibility

of the interference signal, defined as

V =
Imax − Imin

Imax + Imin

, (3.2)

where Imax(Imin) corresponds to the maximum (minimum) of the intensity, quan-

tifies the instrument response function. A visibility of 1 characterises the ideal

situation.

In our case the linear stage is not completely flat such that scanning the moving

arm across the full range shows a nonlinear variation in beam overlap. The first-

order coherence of the input field is obtained from measuring the fringe visibility

for a number of set delays between the arms. To calibrate the interference signal

at each delay, two mechanical shutters (S1 and S2 in Fig. 3.14) are employed.

First we slowly move the stage and measure the fringe visibility for a number of

periods (5-10), then close shutter S1 and record the intensity in the moving arm,

close shutter S2 to record any background signal (APD dark counts mostly) and

open S1 to record the intensity in the stationary arm. Exemplary data for this

procedure is displayed in the inset on the right of Fig. 3.14

When measuring the first-order coherence of QD resonance fluorescence a se-

quence is added in the calibration where the QD transition is shifted off resonance

via gate control and laser leakage is recorded. Given different intensities I1, I2 in

each arm, the expected visibility for a monochromatic source is

V =
Imax − Imin

Imax + Imin

=
2
√
I1I2

I1 + I2

(3.3)

and the measured visibility is compared to this ideal case. After the calibration

measurement, the stage moves to the next set delay (e.g. a distance of 1 mm)

and the procedure repeats.

The plot on the right in Fig. 3.14 displays the results for a laser (several MHz
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Figure 3.15: Coherence meaurement for a free-running external cavity laser (Toptica
DL pro 940). The data at short delays is the same as in Fig. 3.14, the long delay data
is obtained using the additional delay line.

linewidth) as input field. The visibility across the travel range is consistently

around 99% (average 99.3%, standard deviation <0.5%), very close to the ideal

case1. At longer delays, for example when the additional delay stage is incor-

porated, the finite laser coherence becomes apparent. Figure 3.15 displays the

g(1) (τ) measurement for a free-running external cavity diode laser. It is reason-

able to expect a Gaussian decay of laser coherence in this kind of measurement:

The laser linewidth is narrow at short timescales (< 100 KHz for ∼ µs acquisi-

tion), however mechanical instabilities broaden the linewidth on slower timescales.

Roughly speaking, the laser central frequency may wander monotonously in one

direction on sub-second timescales, and randomly when measured longer. The

parameter for a Gaussian fit (blue curve) are shown in the lower left of the figure.

3.4.3 Second-order coherence

The second-order coherence or intensity-correlation function g(2)(τ) describes the

light’s intensity statistics in time. This is equivalent to the arrival time statistics

of photons at a detector. Hence with a perfect detector we only have to record

a sufficiently long timetrace of detector clicks and then evaluate the correlation

1For positive delays > 300 ps the noise is higher, due to decreasing beam overlap at the end
of the travel range of the stage.
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Figure 3.16: Timing resolution of APD single photon counters. a, Response of single
APD to a pulses of a few ps width at 825 nm recorded in a start-stop configuration
with the Ortec TCA/MCA. A modelocked Ti:Sa laser provides optical pulses at ∼ 80
MHz repetition rate. The start trigger is obtained by sending a fraction of the pulsed
laser light to a photodiode with 1.4 GHz bandwidth and amplifying the output. After
heavy attenuation the laser pulsetrain is coupled into the APD whose electrical output
gives the stop signal. The jitter of the electric start pulse is negligible compared to
the APD jitter. b, Response function of two APDs in a Hanbury-Brown and Twiss
configuration. The red line is least-squares fit to the data using a Voigt function. The
Lorentzian contribution to the linewidth is about 1/3.

function, i.e. the detection time differences for all pairs of clicks. For real detec-

tors we run into problems when the features of interest, typically the intensity

correlation function at small delays, occur on timescales smaller than the detec-

tor deadtime. The way around this is to measure g(2)(τ) in a Hanbury-Brown

and Twiss setup [112], a sketch of which was shown in Fig. 2.4. The signal is

split into two parts of (ideally) equal intensity and sent to two detectors. Each

detector may have a large deadtime, but the time difference between two closely

spaced photons can still be resolved if they leave different output ports of the

beamsplitter.

The experimental (optics) setup for g(2)(τ) measurements is less involved than

that for g(1)(τ) or the spectrum S(ν) as no moving parts are involved. The signal

from a single-mode fibre is sent to a free-space beamsplitter and the two output

ports are coupled into single photon detectors via coupling into single-mode fi-

bres. Alternatively, the signal is coupled directly into a fibre-based beamsplitter

(FONT Canada) with the two output fibres plugged into the detector fibre ports.
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Two systems are available in the lab that convert the detector coincidences into

correlation data. The first one is the time-to-amplitude converter from Ortec

(ORTEC Model 567). It converts pulse detection time differences between the

two input ports (start and stop are fixed) into the amplitude of an ouput pulse.

The pulse height is digitised and stored with a multi-channel analyser (MCA

926M) before being sent to a computer. The timing resolution of the instrument

amounts to ∼ 20 ps for coincidence time delays of 100-200 ns. The second system

is the 8-channel time-to-digital converter ‘quTau’ from quTools. In addition to

recording time-differences between any two of the input channels it also allows

time-tagging events from all channels in the same run (no loss of information).

The timing resolution is specified as 81 ps.

In almost all measurements presented in this thesis we use fibre-coupled Perkin-

Elmer single photon counting modules (SPCM-AQRH16). At 950 nm wavelength

they feature a detection efficiency about 20-25 % and dark count rates ∼ 20 Hz.

The timing jitter of individual modules varies between 450-500 ps, depending on

module, detection wavelength and detection rate [113]. In the Hanbury-Brown

and Twiss configuration this corresponds to a measurement uncertainty of 600-700

ps. These numbers are important as they, together with the timing resolution of

the correlation electronics, represent the system response function and any mea-

sured signal is a convolution of the actual signal with the response function of the

instrument. Two measurements for the system response function are presented

in Fig. 3.16, for single photon detection on the left and two-photon detection on

the right.
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Chapter 4

A two-level system in a

solid-state environment: resonant

QD spectroscopy

Having covered some theoretical background on the near-resonant light-matter

interaction of two-level systems in Chapter 2, and described our experimental

capabilities in Chapter 3, we now turn to the experimental study of a real system.

Subject of study are the resonantly driven neutral exciton (X0) and the negatively

charged trion (X1−) QD transitions at zero external magnetic field. With a fine-

structure splitting of several GHz for our samples both X0 transitions individually

should behave like a good two-level system. As for the X1− transitions at zero

external magnetic field, we would näıvely expect the two sets of transitions to be

degenerate and hence also follow the predictions for a two-level system.

In this chapter we explore the properties of QD resonance fluorescence. We look

at the standard features expected for two-level systems: saturation behaviour,

power broadening and the first- and second-order correlation functions. In the

low and moderate excitation power regime (around saturation and below) we

find that the X0 transition approximates an ideal two-level system well. In the

Heitler regime we directly observe highly coherent scattering from a single QD;

a first for solid-state single photon emitters. A closer look at the spectral and

statistical properties of the fluorescence reveals deviations from the ideal two-level
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behaviour. We identify and quantify influences on the QD emission properties:

Spectral diffusion modifies scattering rates, exciton-phonon coupling provides a

dephasing mechanism and finally, the nuclear Overhauser field invalidates the

two-level approximation for the X1− transition.

Some of the material in section 4.1 was published in [114]. Measurements of the

acoustic phonon sidebands (Fig. 4.11) were taken and analysed together with

Claire Le Gall.

4.1 Subnatural linewidth single photons

4.1.1 Performance of the measurement system

The technical challenge to observe the QD resonance fluorescence is to suppress

sufficiently the laser background at the same frequency. Quantifying the perfor-

mance of our experimental system in terms of the laser background suppression

versus the collection and detection efficiency of QD photons has to be the first

step in our investigation.

Our experimental arrangement, discussed in detail in the previous chapter, re-

lies on a confocal microscope where we use the combination of cross-polarisation

and confocal rejection of the collection fiber to suppress laser reflections in the

detection path. The two polarisers are aligned to the dark-field configuration

by sending a strong laser at the QD resonance frequency through the confocal

microscope and minimising the transmission. Starting from the dark-field config-

uration and rotating the collection polariser to maximise transmission we measure

a factor of 107-108 difference in power at the collection fibre end. Conversely, com-

paring the photoluminescence intensity from a saturated X1− transition in the

dark-field configuration to the intensity measured when the collection polariser is

absent, we find about a factor two difference. Translating this suppression of laser

reflection into a QD signal-to-laser background ratio depends on the excitation

Rabi frequency ΩR, on how efficiently we excite the transition and how well we

collect the QD fluorescence.

Figure 4.1 a-d presents the excitation power dependence of the resonance fluores-

cence from QD ‘Claude’ in order to quantify both the collection efficiency of our
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Figure 4.1: Analysis of collection efficiency and background contribution of resonance
fluorescence on the example of QD ‘Claude’. a, Integrated photon counts for resonance
fluorescence at the saturation point as a function of laser detuning. The red curve
is a Lorentzian fit to the data (open circles). Inset: Total off-resonance background
counts (blue bars) compared to the APD dark counts alone (yellow bars). b, Integrated
photon detection events when the laser is on resonance with the QD transition (red
triangles) and c, off resonance (black triangles). d, resonance fluorescence signal-to-
background ratio (SBR). At saturation (Ω2

sat = 1/ (T1T2)) a value of 1050 is achieved.
The excitation power for b-d is scaled in units of the saturation power.
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system and the fraction of residual laser background in the detected photons.

In panel a the laser frequency is fixed and photodetection events from a single-

photon counting avalanche photodiode (APD) are recorded (open blue circles) as

a function of gate bias. The bias Stark-shifts the QD transition and is expressed

as frequency detuning here. The full-width at half-maximum of the Lorentzian

fit (red curve) to the data is 530 MHz in linear frequency. Here, the excitation

power corresponds to the saturation point. The inset displays the residual back-

ground for large detunings (blue bars) which includes the contribution of APD

dark counts, measured separately and shown in yellow. In panels b and c the

red and the black triangles display the total photodetection events per second

on- and off-resonance, respectively, as a function of excitation power normalized

to the saturation power. The solid curves represent the theoretically expected

behaviour for the data in each panel and the dashed blue line indicates the mean

dark count level.

For an excitation power at the saturation point (Ω2
sat = 1/ (T1T2), where Ω de-

notes the Rabi frequency and T1, T2 lifetime and pure dephasing time) we collect

photons at a rate of 1.2-1.5 MHz into our single-mode optical fiber, while the

laser and detector background contribute <0.01% of the total signal. With a

detector quantum efficiency in the range of 20-25% we register 3 · 105 detector

clicks per second. The blue circles in panel d show the obtained ratio of the res-

onance fluorescence signal to total background (SBR) for each laser power along

with the expected power dependence (blue curve). At a tenth of saturation, the

residual laser contribution to the background falls below the dark count level (30

Hz) limiting the SBR.

Turning to the combined photon collection and detection efficiency, we can esti-

mate this number from the saturation curve and the QD excited state lifetime.

For a lifetime of 600-700 ps, which is typical for our sample we estimate a modest

0.1% total collection and detection efficiency for QD Claude. Starting from the

detector and working towards the QD sample we estimate the losses in the collec-

tion path as follows: detector efficency ∼ 0.2, coupling into the collection fibre ∼
0.5, polarisation suppression ∼ 0.5, polariser transmittance ∼ 0.85, beamsplitter

transmittance ∼ 0.92, transmittance through glass plate/objective lens/SSIL ∼
0.8. Altogether this give 0.0275 ≈ 1/35. The remaining factor then sets the
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outcoupling efficiency to 3.5 %1.

4.1.2 Saturation and power broadening

4.1.2.1 Saturation of a two-level system

The data in Fig. 4.1 b follows the saturation behaviour we expect for the two-level

system and was already discussed in the theoretical background. As a reminder,

the emission rate ΓRF is given by the excited state population and its lifetime:

ΓRF = ρ22 ×
1

T1

=
1

T1

× 1

2

Ω2

(T1T2)−1 + Ω2
, (4.1)

where we assume resonant excitation at zero detuning. The square of the Rabi

frequency (Ω2) is proportional to laser power, which is the experimentally mea-

surable quantity. The link between excitation power and Rabi frequency is made

through the saturation point; where the emission rate is half of its maximum.

This point can be determined very reproducibly and from Eq. (4.1) we can see

that the saturation power corresponds to Ω2
sat = 1/ (T1T2). Using this to rear-

range we have

ΓRF =
1

2T1

× s× (T1T2)−1

(T1T2)−1 + s× (T1T2)−1 =
1

2T1

× s

1 + s
, (4.2)

where s is the saturation parameter2.

4.1.2.2 Power broadening

Power broadening of a two-level system is expected to follow

ΓFWHM =
2~
T2

×
√

1 + Ω2T1T2 = ΓFWHM (0)×
√

1 + s, (4.3)

1We note that the DBR stopband for this sample is centred around 980 nm (designed to
be 960 nm) and reflectivity measurements show a intensity difference of factor 2-3 between the
centre of the stopband and the wavelength of QDs we usually work with (950-960 nm). Count
rates above 1 MHz have been measured at longer wavelengths

2One of the assumptions of the two-level model is that lifetime and dephasing time do
not change with excitation power. The former is a solid assumption while the latter is not
necessarily true [110; 115; 116]. However, this effect becomes only apparent for s �1.
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Figure 4.2: Power broadening of the X0 (a) and X1− (b) transitions of QD ‘Claude’.
Experimental data is shown as black dots. The grey shaded area displays the theoretical
behaviour for zero-power linewidths of 250 MHz (lower boundary) and 300 MHz (upper
boundary). An effective measurement bandwidth is indicated by the blue curve.

where the saturation parameter is used again to simplify the expression. Ideally,

the linewidth in the limit of small Rabi frequencies reflects the dephasing time T2

and with the knowledge of the lifetime T1 we can extract a pure dephasing time. In

the absence of pure dephasing (T2 = 2T1), the radiative linewidth is recovered. It

is important to note that the linewidth here is the absorption linewidth, obtained,

for example, by scanning a narrow-band laser across the transition and recording

the total emission intensity. This should be distinguished from the emission

linewidth, which can be considerably different and is treated in the next section.

Figure 4.2 a and b display the linewidth of the X0 and X1− transitions of QD

‘Claude’, respectively. The data, shown as black dots, are extracted by fitting

Lorentzians to absorption linescans such as the one in Fig. 4.1 a. The linewidth

uncertainty for each fit is about the size of the dots in the figure. The grey

band indicates the line broadening expected from 4.3 for radiative linewidths

between 250 and 300 MHz and no pure dephasing. 250 MHz radiative linewidth

is expected from lifetime measurements for this sample. Above the saturation

point the experimental data are mostly within this band, while the mismatch

with theory is clear below saturation, in particular for the X1− data set. Also

shown is the effective measurement bandwidth (blue line): It is the inverse of

the time it takes to scan across a 250 MHz window (one radiative linewidth).

This is in the range of 1-10 Hz, i.e. measuring the FWHM of the transition takes
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about 1 s for the measurements presented. The deviations from the ideal case are

attributed to spectral diffusion, rather than fast dephasing and will be explored in

the second half of this chapter (see section 4.2.1). Further, the difference between

the X0 and X1− is due to the nuclear Overhauser field (see section 4.2.3).

4.1.3 Spectral and statistical properties at low powers

The spectrum of resonance fluorescence. Resonant excitation of a two-

level system drives the coherences and population in the Bloch sphere according to

the optical Bloch equations presented in the theoretical background. The emitted

photons directly reflect the dynamics of the system, both of the population (in

the emission rate) and the coherences (in the spectrum). In order to capture the

full picture through measurements we need to look at the spectral and statistical

properties of the photons using the correlation functions introduced theoretically

and experimentally earlier.

The spectrum of resonance fluorescence for a laser exactly on resonance is given

by1 the sum of incoherent and coherent components:

S (∆ν) = Iinc S̃inc (∆ν) + Icoh S̃coh (∆ν)

= ρ22

(
1− 1

2

T̃2

T̃1 + Ω2T̃ 2
1 T̃2

)
S̃inc (∆ν) + ρ22

(
1

2

T̃2

T̃1 + Ω2T̃ 2
1 T̃2

)
S̃coh (∆ν)

= ρ22

{(
1− 1

2

T̃2

T̃1 + Ω2T̃ 2
1 T̃2

)
1

2πρ22

((
Ω2T̃ 2

1

)−1

+ 2

) × [ 1/T̃2

∆ν2 + 1/T̃2
2

+
2ρ22

Ω2
×
(
Aη/2−B (∆ν − µ) / (8µ)

(∆ν − µ)2 + η2
+
Aη/2 +B (∆ν + µ) / (8µ)

(∆ν + µ)2 + η2

)]

+

(
1

2

T̃2

T̃1 + Ω2T̃ 2
1 T̃2

)
δ (∆ν)

}
(4.4)

1It is surprisingly difficult to write down this equation without typographic mistakes and
wrong signs - a good proportion of QD resonance fluorescence papers suffer from this issue.
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where ∆ν is the emission detuning in linear frequency, T̃1,2 = 2πT1,2, S̃ refers to

the normalised (area of unity) spectrum and we use shorthands

A =Ω2 +
1

T̃1

(
1/T̃1 − 1/T̃2

) ,
B =2Ω2 +

(
3

T̃1

− 1

T̃2

)
− 2

T̃1

(
1

T̃1

− 1

T̃2

)
,

µ =

√
Ω2 − 1

4

(
1

T̃1

− 1

T̃2

)
,

η =
1

2

(
1

T̃1

+
1

T̃2

)
.

The normalisation of Eq. 4.4 is then such that the integrated intensity corre-

sponds to the excited state population ρ22, linking it to the saturation curve we

are familiar with.

At high excitation power the incoherent component reveals the Mollow triplet,

while at low excitation power the spectrum is single-peaked. The emergence of

sidebands in the spectrum of resonance fluorescence at Rabi frequencies Ω� Ωsat

arises as a consequence of Rabi oscillations between ground and excited states

and is considered the hallmark of resonance fluorescence. It was among the first

features sought and observed experimentally, first for atoms [99], but also for

QDs [103; 104; 105; 106]. In this limit of Rabi frequency, the emission is sponta-

neous and incoherent with respect to the excitation laser. Remarkably, resonance

fluorescence is expected to show a crossover from incoherent to coherent pho-

ton scattering, accompanied by a drastic change in the emission spectrum as a

function of Rabi frequency. Perhaps surprisingly, the limit of vanishing Rabi fre-

quency in the resonant interaction has remained relatively unexplored for atoms,

ions and any single solid-state emitter [117]. Here, we will investigate this limit

for QD resonance fluorescence and report on the first direct observation of highly

coherent light scattering from a solid-state emitter. We employ a shorthand,

the ‘Heitler regime’, to denote the situation where the Rabi frequency is much

smaller than the spontaneous emission rate and pure dephasing is negligible, after

W. Heitler who described the response of a two-level system to monochromatic
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excitation in the early days of quantum optics.

Figure 4.3 displays a series of resonance fluorescence spectra for QD ‘Claude’.

For each row of the figure the excitation laser power is fixed and its frequency is

set on resonance with the QD transition. The resonance fluorescence spectrum

is recorded with the scanning Fabry-Perot cavity (see section 3.4.1 for instru-

ment details and response function). In the left panels we plot the experimental

data (as filled red circles) and a calculated spectrum based on Eq. (4.4) and the

Fabry-Perot response function (green continuous line) in linear scale. The middle

panels show the data and the convolved theoretical spectrum (green dashed line)

in a semi-logarithmic scale, together with the coherent (blue continuous line) and

incoherent (red continuous line) components. Both components of the spectrum

are convolved with the FP response function and offset for clarity. The panels

on the right give the theoretical spectra without convolution. These spectra in-

tegrate to give the value of ρ22. To the right of the plot we note the experimental

saturation parameter s and the parameters for the theoretical spectra.

The excitation laser bandwidth is very narrow on small timescales (< 100 KHz

for ∼ µs acquisition), however slow spectral wandering broadens the linewidth on

the timescale of the data acquisition (∼ seconds) to a few MHz. In the simulation

we take a top-hat function of 3 MHz width to account for this laser linewidth.

This is the narrow peak on top of the incoherent component in the right panels.

This spectrum in the right panels is convolved with a Lorentzian of 25-35 MHz

width and scaled to the data to arrive at the spectra (green lines) in the left and

middle panel.

Starting from the top, at a laser power corresponding to s = 2.35 both com-

ponents are clearly visible in a linear scale (left panel). The incoherent part

dominates the deconvolved spectrum (right panel); here the coherent fraction

is 0.3. As we decrease the laser power, going down the panels, the incoherent

component is increasingly masked by the coherent part. Above saturation, some

structure is visible on a semi-logarithmic scale in wings of the incoherent part,

whereas for s ≤ 1 the incoherent spectral component is reduced to a single peak.

At s = 0.1 where theory predicts a coherent fraction of 0.9 the entire measured

spectrum collapses to a Fabry-Perot cavity resolution-limited Lorentzian. Any

residual incoherent component of resonance fluorescence in this regime is less
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Figure 4.3: Resonance fluorescence spectra of QD ‘Claude’ as function of exitation
power. The data (red circles) are recorded with a scanning Fabry-Perot cavity of 30
MHz resolution. Continuous and dashed lines show calculated spectra for the respective
experimental parameters. With the exception of the right panels, the calculated spectra
are further convolved with the Fabry-Perot response function and scaled to the data.
Left panels: data and convolved calculated spectrum. Middle panel: as before, but in
a semi-logarithmic scale. Coherent (blue) and incoherent (red) components are shown
individually for clarity. Right panels: Calculated spectra without convolution.
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than the detectable level within the spectral resolution and the signal-to-noise

ratio of our measurements. We clearly observe subnatural linewidth fluorescence

here, consistent with predictions for a simple two-level system in the absence of

any pure dephasing. In fact, the theory curves for a purely radiatively broadened

system, i.e. T2 = 2T1, fit the measured spectra for all power levels presented

in Fig. 4.3. This is strong evidence that QDs provide clean atomic-like optical

transitions with little to no dephasing at timescales comparable to their lifetime.

The spectral resolution of the Fabry-Perot cavity of ∼ 30 MHz limits us at this

point to perform more quantitative analysis of the QD resonance fluorescence

spectrum. We switch to Fourier transform spectroscopy and measure the first-

order correlation function in a Michelson interferometer (see section 3.4.2 for

details on the setup).

The first-order correlation of resonance fluorescence. The derivation of

the first-order correlation for a resonantly driven two-level system was sketched

out in the theoretical background. Separating the spectrum into incoherent and

coherent components and neglecting the oscillations at the optical wavelength we

have:

g(1) (τ) = Iinc g
(1)
inc (τ) + Icoh g

(1)
coh (τ)

= ρ22

(
1

2
exp−|τ |/T2 + exp

−|τ |/2
(

1
T1

+ 1
T2

) (
N cos (µ |τ |) +M sin (µ |τ |)

))
+ ρ22

1

1 + Ω2T1T2

T2

2T1

, (4.5)

where τ is the time delay between the fields interfered in the interferometer and

we have taken the detuning to be zero. The coherent part of eq. (4.5) has to be

modified to account for the finite laser coherence and laser spectral wandering

encountered in experiments. From the instrument calibration (cf. Fig. 3.15) a

Gaussian decay is reasonable, such that

Icoh g
(1)
coh (τ) =

(
ρ22

1

1 + Ω2T1T2

T2

2T1

)
exp

− 1
2

(
|τ |
τL

)2

, (4.6)

70



where τL is around 5-7 ns. The amplitude of the g(1) (τ) expression given above

scales as the excited state population ρ22. In order to compare it to measured

interference visibilities we divide by ρ22 and obtained an expression with unity

amplitude for all Rabi frequencies.

Experimental results on first-order coherence measurements for the X0 transition

of QD ‘Claude’ are presented in Fig. 4.4. Here we drive the QD on resonance with

a free-running external cavity diode laser; the measurement protocol is detailed

in section 3.4.2. Figure 4.4 a shows experimental data as open symbols and fits

according to Eqs. (4.5), (4.6) as solid lines for four excitation powers, indicated

on the right-hand side in terms of the saturation parameter s.

We make two immediate observations. First, in agreement with the subnatural

linewidth emission spectra from Fig. 4.3, the coherence of the QD resonance

fluorescence is sustained on timescales considerably longer than the spontaneous

lifetime of ∼ 640 ps (250 MHz radiative linewidth). Second, we would expect the

visibility measured around zero time delay to be equal to that of the laser (∼
0.99, see Fig. 3.14 for reference). For QD resonance fluorescence the maximum

amplitude is ∼ 0.88. This discrepancy suggests the presence of a very fast coher-

ence decay channel for part of the fluorescence. For a stepsize of about 10 ps in

Fig. 4.4 a, the spectral width of the fast decay channel is expected to be in the

THz frequency range, which is consistent with phonon-assisted transitions as we

will see later in this chapter.

Panel b presents a power series of interference visibilities obtained at long delays

(filled symbols), together with the measurement for the excitation laser (open

squares). The laser coherence was measured at intensities and scanning speeds

similar to the resonance fluorescence data and allows us to account for the finite

laser coherence. In panel c, we plot the coherent fraction as extracted from the

fits in panel a (blue circles) and the power series in b (black squares) as a func-

tion of excitation power. To compare to the predictions for a simple two-level

system we consider only the zero-phonon line (ZPL) here1 and correct for the

1that is, we correct for the finite visibility at zero time delay
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Figure 4.4: First-order coherence measurements of QD resonance fluorescence and
evaluation of the coherent fraction. a, g(1) measurements at short and long delays
(data as open symbols) with fits according to Eqs. (4.5) and (4.6). b, Long delay
measurements for a series of excitation powers compared to the laser coherence. c,
Coherent fraction of QD resonance fluorescence as extracted from panels a and b. The
grey band gives the theoretical prediction for 1.8T1 < T2 < 2T1.
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laser coherence. The grey band displays the coherent fraction according to

Fcoh =
1

1 + Ω2T1T2

T2

2T1

=
1

1 + s

T2

2T1

, (4.7)

where the upper limit is set by T2 = 2T1 and the lower limit by T2 = 1.8T1.

4.1.4 Wave-particle duality in the Heitler regime

The concept that two-level systems emit photons one at a time is well-known

in quantum optics. First proposed theoretically by Kimble and Mandel [118]

in 1976, the first measurement of photon antibunching in the intensity correla-

tion g(2) (τ) was shown by Kimble, Mandel and Dagenais a year later [101; 119].

Since the potential of single photon sources in quantum communication [98] and

computation [120] was establised, research into this field has exploded. First an-

tibunching measurements using above bandgap excitation on quantum dots stem

from 2000 [121; 122], and great experimental efforts have led to efficient opti-

cally pumped QD single photon sources [123], and also electrically controlled QD

single photon diodes in laboratories [19]. Under resonant excitation the photon

statistics, captured through the second-order correlation function g(2) (τ), reflect

the dynamics of the driven system, and allowed the observation of QD exciton

Rabi oscillations [104].

Where g(1) (τ), or equivalently the emission spectrum, measures the wave proper-

ties of the photons, the intensity autocorrelation g(2) (τ) represents the photon’s

particle nature. These are, of course, complementary features. For incoherent

pumping, i.e. above band excitation the intensity autocorrelation g(2) (τ) is linked

to the excited state lifetime T1, whereas the field correlation function g(1) (τ) links

to its coherence time T2. In other words, the coherence τc,photon of the single pho-

tons is constraint to the emitter lifetime: τc,photon = T2 ≤ 2T1.

Under resonant excitation in the Heitler regime, however, photons scatter elas-

tically: When the Rabi frequency is much smaller than the spontaneous emission

rate and pure dephasing is negligible, QD emission is predominantly coherent.

Then the coherence properties of resonance fluorescence photons (and thus their
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Figure 4.5: Wave-particle duality in the Heitler regime. Left: The emission spectrum
is Fabry-Perot resolution limited, and much narrower than the radiative linewidth (in-
dicated by the shaded area). The subnatural linewidth indicates a coherence T2 � 2T1.
Right: The intensity autocorrelation at the same measurement setting demonstrates
antibunching on the timescale of the excited state lifetime.

spectrum) are liberated from the QD transition lifetime. Instead, the coherence

is derived from the excitation laser properties. The subnatural linewidth emission

spectrum from the previous section is displayed on the left-hand side in Fig. 4.5

together with the radiative linewidth as grey shaded area. On the right-hand side

we display the g(2) (τ) intensity autocorrelation measurement under identical ex-

citation conditions. The data (dark red curve) demonstrates clear antibunching

on the timescale of the excited state lifetime. Here, the recorded curve is limited

by the detector response, such that the dip close to the zero time delay cannot be

fully resolved. The dotted black line shows a deconvolved fit to the data, based

on equation (2.31)1.

These results reveal the counter-intuitive nature of resonance fluorescence in the

Heitler regime: The QD operates as a quantum converter of a weak coherent

state into a coherent single photon stream. The photons arrive one at a time to

our detection system, but are phase-correlated with each other and with the laser

1Spectral diffusion of the QD transition during the long g(2) (τ) measurement needs to be
taken into account to produce the blue fit curve. This will be discussed in more detail in section
4.2.1.
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field from which they originated.

At this point we can draw some intermediate conclusions from the combination

of spectral, g(1) (τ) and g(2) (τ) measurements:

• Fits to spectra and g(1) (τ), in particular the evaluation of the coherent

fraction in Fig. 4.4, allow us to put a number on the QD transition coherence

time of T2 = (0.95± 0.05) · 2T1. The results show that QD transitions are

intrinsically mostly free of pure dephasing, contrarily to earlier reports [104].

• In the limit of weak excitation and negligible pure dephasing (the Heitler

regime), photons are predominantly coherently scattered. Their coherence

is no longer bound by the transition lifetime; it can be significantly longer.

Our measurements point to a time-averaged linewidth of several MHz. At

the same time, antibunching persists on the timescale of the transition

lifetime.

• Within the measurement uncertainty the coherently scattered photons fol-

low the coherence of the laser which is limited by spectral wandering to

several MHz. In other words, a quantum dot generates single photons with

laser-like coherence free from any dephasing processes affecting the QD light

emission.

The observation of highly coherent scattering is relevant and exciting for a num-

ber of applications in quantum information processing with QDs. First, issues

thought to be inherent in solid-state systems, such as spectral diffusion, modify

the probability to scatter a photon, but do not change its spectral properties.

This, in combination with the fact that the absolute photon frequency is pinned

to the laser frequency can be of crucial advantage in quantum interference ap-

plications, where indistinguishable photons are needed at different times or from

separate sources. Second, not only the frequency, but also the photon phase is

expected to be determined by the excitation laser, which should allow us to shape

phase and spectrum of single photons deterministically. Some of these ideas will

be explored experimentally in chapter 6.

We note that Nguyen et al. report similar measurements, see Ref. [124].
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4.2 Effects of the solid-state environment

The first part of this chapter explored experimental evidence of the near-ideal

behaviour of QD emission under low power resonant excitation. However, even

in these basic quantum optical measurements, deviations from the theoretical

predictions were present: Absorption linewidths were broader than expected,

particularly for the X1− transition (cf. Fig. 4.2), the contrast of the first-order

coherence was limited (cf. Fig. 4.4) and the antibunching dip in the second-order

coherence was narrower than predicted (Fig. 4.5).

To explain these effects we have to consider the solid-state environment of the QD.

Here we focus on three effects in particular: spectral diffusion, exciton-phonon

coupling and the nuclear Overhauser field.

4.2.1 Spectral diffusion

Spectral diffusion describes the effect of transition resonance shifts over time. It is

usually attributed to the uncontrolled electric fields arising from the dynamics of

defects (metastable trapped charges) or other QDs nearby. The time-dependent

electric fields shift the QD resonance via the Stark effect (see intro section). Par-

ticular sample circumstances and models of defect dynamics have been subject

of a number of studies recently [78; 81; 125; 126]. Timescales and magnitudes

vary greatly between different structures and samples in these reports. Here we

want to quantify the severity of spectral diffusion in our gated sample (Chef 2

sample), and we employ resonance fluorescence to obtain precise information on

bandwidth and amplitude of spectral diffusion1. Information is extracted from

time-resolved resonance fluorescence detection: We record a series of 10-s long

resonance fluorescence detection time traces with a resolution of 10 µs and treat

the data using statistics on photon arrival probabilities and time and compare

the result to a simple model.

1Note added: High quality measurements, also using QD resonance fluorescence and yielding
similar results, were obtained in the group of R. Warburton very recently [127].
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4.2.1.1 Spectral diffusion amplitudes

First we take the 10-s long timetraces and compile histograms of the probability

to detect a set number of counts per detection bin. Given the overall small

collection and detection efficiency (< 0.2%) of the setup we expect the detections

to obey Poissonian statistics. Then, for a mean number of m photons per bin,

the probability distribution of kbin counts per bin is

P (kbin) =
mkbin exp−m

k!
. (4.8)

The mean m is linked to the QD fluorescence through the collection and detection

efficiency ηdetection and the excited state population (see Eq. (4.2)):

m (s,∆) = ηdetection × tbin ×
1

2T1

s

1 + s+ 2 (2π∆)2 T1T2

, (4.9)

where tbin is the duration of a detection bin and ∆ is the detuning of the laser

from resonance. For numerical data treatment it is convenient to work with

m (s,∆) = a× s+ 1

1 + s+ 2 (2π∆)2 T1T2

, (4.10)

where the fraction is normalised to unity for zero detuning (∆ = 0) and the

prefactor a can be conveniently linked to the experimental mean for a given bin

size.

The effect of spectral diffusion is to make the laser detuning into a time-varying

quantity ∆ (t). When measuring for sufficiently long we expect to cover the full

extent of the spectral diffusion, such that ∆ (t) can be described by a probability

distribution. In terms of the probability distribution of kbin counts per bin, the

Poisson distribution (4.8) is modified to

P (kbin) =
∑

∆

W (∆)× m (s,∆)kbin exp−m(s,∆)

k!
. (4.11)

The weighting function W (∆) effectively describes how much time is spent at each

detuning, and we can reasonably assume that it follows a Gaussian distribution
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for long measurement times:

W (∆) = e
− 1

2

(
∆−δ

∆FWHM

√
8 ln 2

)2

. (4.12)

To allows us to describe the effect of spectral diffusion when setting (or attempt-

ing to set) the laser at a finite detuning δ from the QD resonance the Gaussian

is centred on δ. The amplitude of the spectral diffusion is given by the width of

the Gaussian (∆FWHM) and the running variable is ∆.

Predictions from the model (Eqs. (4.11), (4.12)) are compared to the experimen-

tal data in Fig. 4.6. Here the laser is set on resonance with the X1− transition of

QD ‘Isidor II’ and resonance fluorescence counts are recorded continuously for 10

s with 10 µs resolution. The measurement is repeated a number of times and for

different excitation powers. The data are rebinned to move the mean counts per

bin to around 30 or greater to allow accurate fitting. The resulting histograms

are normalised to unity and displayed as circles in Fig. 4.6 a-f. The blue curve is

a fit of the model to the data; the main parameters are displayed in the top right

corner of each plot. The red curve shows the histogram expected for a transition

without spectral diffusion. In panels a,c and e the data are well fitted1 assuming

the laser (or equivalently the weighting function W (∆)) is set on resonance, and

the diffusion coefficient ∆FWHM is in the range of 100-150 MHz. This is consistent

with most of the 10-s long pieces of data of which we only display a few here. In

some cases however, histograms such as in panels b, d and f are obtained. The

data agree very well with the model assuming that the QD resonance is centred

on a fixed detuning from the laser for the duration of the measurement. At the

same time, the diffusion coefficients for these data is similar to the zero detuning

cases.

We note that the histogram shape (and amplitude) is a sensitive function of both

the diffusion width and the detuning, and a particular shape is uniquely described

by both parameters.

In panel g, we summarise the diffusion coefficients for a few data sets (including

data with non-zero detuning). For this particular QD, the diffusion coefficients

1An additional peak is visible in the histogram data, mainly for higher excitation power.
This is attributed to a distinct spectral jump of the QD resonance, a feature commonly observed
in high-density samples.

78



range between 100-200 MHz on a timescale of 10 s, with the data in panels b, d,

f implying that an average of the full extent of spectral diffusion is not reached in

10 s. Panel h displays the effect spectral diffusion is expected to have on (slow)

absorption linewidth measurements: We take the measured diffusion amplitudes

∆FWHM from panel g and calculate the resulting absorption lineshape. Roughly

speaking, the spectral diffusion broadens the absorption lineshapes by 50 MHz

compared to the transform limit (250 MHz radiative linewidth) which is given

by the lower limit of the grey band. This compares reasonably well with the

experimental data presented earlier (cf. Fig. 4.2).

4.2.1.2 Spectral diffusion timescales

To access information on the diffusion timescale we could divide the 10-s long

data into smaller chunks and repeat the histogram treatment, but the analysis is

fairly cumbersome and becomes less accurate as the amount of data is reduced.

At the same time, the assumption of a Gaussian detuning distribution is a pri-

ori not valid anymore. Two more suitable methods for analysing the spectral

diffusion dynamics are decomposition into Fourier components (via Fast Fourier

Transforms) in the frequency domain and calculating the intensity autocorrela-

tion in the time domain. Both of them are very powerful tools for this purpose.

Here, we concentrate on the autocorrelation1. The intensity autocorrelation func-

tion g(2) (τ) was introduced earlier as a way to quantify the photon statistics at

timescales comparable to transition lifetimes. As a reminder, the intensity auto-

correlation is given by

g(2) (τ) =
〈I (t) I (t+ τ)〉

I2
av

. (4.13)

Calculating the correlations between events separated in time is a means to pick

up on dynamics in the data. For a source with entirely Poissonian character,

such as an ideal laser, the intensity output is entirely uncorrelated for any τ ,

such that the autocorrelation is alway unity. Fluctuations manifest themselves as

bunching (i.e. g(2) (τ) > 1) in the correlation function, with their characteristic

1Note: A detailed analysis of noise in resonance fluorescence using FFTs was recently put
on the arXiv by the group of R. Warburton [127].
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Figure 4.6: Histogram analysis of spectral diffusion effects. a-f, The QD X1− transi-
tion is driven on resonance (nominally) and detection events are recorded for 10 s each
time. Intensity statistics for rebinned data are shown as circles. Fits using the spectral
diffusion model are shown as blue curves and the histograms expected in the absence
of spectral diffusion are shown as red curves.g, Summary of diffusion amplitudes. h,
Extrapolated effects on the absorption linewidth.
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Figure 4.7: Intensity autocorrelation functions for 19 resonance fluorescence time
traces. The data are binned to 1 ms resolution. Three regions of different behaviour
are identified and colour-coded.

timescales and their amplitudes directly mapped to the amplitude and decay time

(the correlation time) of the bunching. We apply this method to QD resonance

fluorescence.

To get a first impression of the situation we have a look at a set of measurements,

binned to a low resolution. Figure 4.7 presents a semi-logarithmic plot of the

unnormalised1 second-order correlation functions for 19 resonance fluorescence

time traces, each of 10-s length and binned to 1 ms resolution. The antibunching

effect at delays τ comparable to the emitter lifetime does not play a role here as

the time resolution tbin � T1.

We identify three regions of different behaviour: All correlations show clear

bunching and a strong similarity with each other for time delays up to ∼ 100

ms (lightly shaded region marked ‘I’). For the intermediate time delays indicated

by region ‘II’ in the plot (∼ 100 ms to ∼ 500 ms) the correlation functions for

1to keep the curves separated
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individual time traces follow a mostly monotone trend, but differ from each other.

Region ‘III’, with delays greater than 0.5 s looks messy. There are no obvious

trends, the g(2) (τ) amplitude varies widely (wildly), and each individual time

trace shows unique behaviour.

Let us start with the analysis of the behaviour in region ‘III’. We first note that

the curves are inherently more noisy here as τ approaches the total recording

time of 10 s. On top if that, if spectral diffusion-induced fluctuations in the res-

onance fluorescence persisted only on timescales shorter than the measurement

time, we would expect to reach a steady-state in the correlation function. There

would be no correlation between detection events separated by large delays τ :

g(2) (∞) −→ 1 (for a normalised distribution). No such steady-state is reached

in our data which covers correlation delays up to 5 s. We conclude that the cor-

relation time for slow fluctuation is � 5 s and these fluctuations contribute the

largest amplitude to the total noise.

Region ‘II’ in Fig. 4.7 shows the transition from the fast to the slow fluctuation

regime and does not yield much additional insight, so we move to the fast dynam-

ics in region ‘I’. To maximise the resolution, the data is kept in the original bin

size of 10 µs here. Figure 4.8 displays four exemplary autocorrelations (a-d) as

green continuous curves in a semi-logarithmic scale, two on resonance (a, c) and

two for a moderate detuning (b, d). The bunching signature already observed

in Fig. 4.7 is resolved in good detail. It is dominated by a decay on a ∼ 1 ms

timescale. A weaker decay feature can be made out at fast timescales (∼ 20 µs),

in particular for the resonant cases. A third decay is present around 10 ms time

delay; this one is more obvious for detuned excitation. Using a sum of three

exponential decays we can generate good fits to the data, which are shown as

dashed red lines.

Revealingly, there is additional structure in the detuned g(2) (τ): a series of alter-

nating peaks and troughs at delays times which are multiples of 10 ms. This is

the manifestation of 50 Hz noise and points to electric field noise picked up via

the sample gates. Panels e-h summarise the decay times and amplitudes found

through fitting. The three correlation times (shape- and colour-coded) are consis-

tently in the same range for different data sets and powers. The picture is similar

for detuned excitation (panel f), but it is not always possible to identify the fast
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Figure 4.8: Spectral diffusion timescales and amplitudes. a-d, Intensity correlations
for QD resonance fluorescence with a timing resolution of 10 µs. Three decay timescales
are identified and summarised in panels e-h.
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Figure 4.9: Analysis of slow diffusion amplitudes. Using data from region ‘III’ in Fig.
4.7 absolute deviations from the steady-state (g2(∞) = 1) are evaluated. The black
squares show the mean of the deviations for each time trace, the grey rectangles display
the range of the deviations.

decay timescale and reasonable fits can be generated with two exponential decays

only. The plots of the correlation amplitudes (panels g and h) use the same shape

and colour code as before and confirm the 1 ms correlation to be the dominant

feature.

Having identified the noise amplitudes and timescales in region ‘I’, can we com-

plete the picture and also quantify the amplitude of the very slow fluctuations?

Going back to Fig. 4.7 we calculate the absolute deviation from the ideal steady-

state value for g(2) (τ > 1 s). The mean (black squares) and the extent of the de-

viations (grey shaded rectangles) for 20 consecutive resonance fluorescence time

traces are presented in Fig. 4.9. The amplitude (∼ maximum of the grey area)

of the deviation is greater or comparable to the 1 ms noise contribution for most

of the individual 10-s long time traces. Over the course of the measurement for

the 20 traces, the total deviations exceed the magnitude of the fast contributions

(cf. Fig. 4.8 g, h) significantly.

The origin of spectral diffusion. The intensity autocorrelation is a powerful

tool to obtain quantitative information about spectral diffusion timescales and

amplitudes. Can we link the results to their origin, i.e. identify which diffusion

timescale stems from which physical mechanism? The two diffusion mechanisms

we have to consider are electric and magnetic field noise. Electric fields shift the
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QD transition resonance via the Stark effect and give rise to an effective detuning

of the excitation laser from resonance. Part of the electric field noise is of exter-

nal origin, such as the 50 Hz noise we have seen earlier. Some will be due to the

dynamics of charges close to the QD. The magnetic field noise comes from the

randomly varying cumulative Overhauser field from the nuclear spin environment

of the QD. The data shown in this section are from the negatively charged trion

transition X1−, so any magnetic field splits the ground and excited state with the

respective splitting determined by the direction and magnitude of the field. Then

we go from a simple two-level system to four levels that, again depending on the

orientation of the B-field, support two or four optical transitions (and mixtures of

these). In any case, however, there is a splitting between the optical transitions.

The effects on absorption lineshapes are sketched out in Fig. 4.10, in a for electric

fields, and b for magnetic fields. The top panels of a and b show two lineshapes

each which represent the absorption profile at two different times. In the sketch

for electric field fluctuations (panel a) the two Lorentzians are shifted by 100 MHz,

in b we change the splitting between a sum of two Lorentzians from 100 to 200

MHz. The bottom panels display the absolute difference between two lineshapes.

The amplitude of the absolute difference tells us how sensitive the fluorescence

intensity is to E- and B-field fluctuations as a function of laser detuning from

the unperturbed QD transition resonance. The sensitivity to electric field noise

is greatest at the slope of the absorption lineshape. In contrast, the sensitivity

to magnetic fields is greatest on resonance.

Relating this information to the correlation times and amplitudes in Fig. 4.8, we

tentatively assign the 10 µs noise to the nuclear Overhauser field dynamics. It is

stronger on resonance, and the timescale is about the same order of magnitude

as expected for the nuclear correlation time [33]. The 10 ms noise is quite clearly

due to electric field fluctuations: its amplitude is dramatically enhanced at finite

detuning. With regards to the 1 ms dynamics, the situation is less clear. The

correlation amplitudes on- and off-resonance do not differ much. At the same

time, the amplitude shows a dependence on the excitation laser power and possi-

bly a saturation behaviour. With the currently presented data we cannot clearly

link it to laser-induced fluctuations of the environment and this will be further

investigated. As for the very slow noise, this can be compensated by manually
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Figure 4.10: Effects of electric (a) and magnetic (b) field changes on the QD trion
transition. a, A change in the electric field at the QD Stark shifts the transition
frequency. The magnitude of the change is greatest at the slope of the resonance. b, A
change in the magnetic field changes the splitting between the optical transitions and
it most strongly felt on resonance.

changing the applied gate voltage and hence is due to changes of electric-field.

Consequences for long measurements: high-resolution intensity corre-

lations. Experiments based on two-photon detection with sub-nanosecond tim-

ing resolution, such as measuring antibunching in a Hanbury-Brown and Twiss

setup, or cross-correlations in a Hong-Ou-Mandel interferometer may require ac-

quisition times of many hours, depending on the excitation power and detuning.

As such, these measurements can suffer significantly from spectral diffusion. Care

must be taken in the data treatment then to include the diffusion effects. We

give an appropriate expression for the intensity autocorrelation g(2) (τ):

g(2) (τ,∆,∆FWHM, δ) =

∑
∆

g(2) (τ,∆)×W (∆FWHM,∆, δ)× L2 (∆)∑
∆

(. . . , τ →∞)
. (4.14)

Here, we calculate the sum of g(2) curves for a range of excitation detunings ∆,

weighted by a product with the Gaussian diffusion function W (∆FWHM,∆, δ)

(centred on δ with a FWHM of ∆FWHM) and the square of the power broadened

Lorentzian linewidth L = s+1
1+s+2(2π∆)2T1T2

(decribing the amplitude of the two-

photon signal). The expression is normalised by division with its long-time limit.
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We will use this formalism in section 4.3 of this chapter for g(2) measurements at

finite detuning.

4.2.2 Phonon coupling

The electron and hole wavefunctions of excitons in QDs are given by an envelope

function depending on QD shape and composition and the fundamental Bloch

functions of the solid-state lattice potential. As such the excitons couple to the

lattice vibrations of the embedding matrix and this coupling provides a dissipation

mechanism. While the confinement in quantum dots gives rise to discrete energy

levels and inhibits phonon-driven population relaxation (the ‘phonon bottleneck’

[128; 129]), dephasing of the optical transition can still be phonon assisted.

4.2.2.1 Acoustic phonon sideband

Experimentally, phonon coupling in QDs was first observed in the photolumines-

cence spectra of II-IV QDs [130]. At cryogenic temperatures the spectrum was

composed of a narrow peak sitting on top of a broad asymmetric background.

The narrow peak is known as the zero-phonon line, as the emission energy is

determined by the optical transition only, while the broadband is due to acoustic

phonon-assisted fluorescence and referred to as the phonon sideband. Similar re-

sults were obtained for InAs/GaAs QDs using four-wave mixing [131], and later

also in photoluminescence [132; 133].

To investigate the effects of exciton-phonon coupling in our samples, we have to

record the resonance fluorescence emission spectrum over a much wider frequency

range than covered earlier in the scanning Fabry-Perot experiments. Measure-

ments of the QD resonance fluorescence spectrally dispersed in the spectrometer

on a 1200 grooves/mm grating are presented in Fig. 4.11 using a logarithmic

intensity scale. The broad phonon sideband is very clearly visible. Before going

into details of the data we will briefly review the theoretical background.

A comprehensive treatment of linear exciton-phonon coupling based on the in-

dependent boson model was published by Krummheuer et. al in 2002 [134] and

accounts for the phonon sidebands. Dephasing of the zero-phonon line can be

included with quadratic coupling to acoustic phonons [135; 136] but will be ne-
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glected here. Following Ref. [134], the exciton-phonon coupling Hamiltonian is

given by

Hexc−phon = ~
∑
q

(
geqbqc

†c− ghqbqd†d+ H.c.
)
, (4.15)

where the sum is over the phonon wavevectors q and there is a summation for each

phonon branch (e.g. the longitudinal acoustic, longitudinal optical and transverse

acoustic phonons). The phonon coupling matrix elements g
e/h
q quantify the cou-

pling for the specific branch, phonon wavevector and the charge carrier (electron

e or hole h) involved. c and c† (d and d†) are the annihilation and creation oper-

ators for electrons (holes) and vice versa for the phonons (bq, b†q). The coupling

matrix elements are specified by a form factor, given by the wavefunction, and a

factor linked to the specific coupling mechanism. The coupling mechanisms are

known from bulk electron-phonon interaction as the deformation potential (for

acoustic phonons), the piezoelectric electron-acoustic phonon coupling and the

electron-optical phonon Fröhlich interaction [137].

For excitons in QDs the deformation potential is the dominant coupling mecha-

nism by a wide margin [134; 138]. A simple physical picture of the exciton-phonon

interaction and how it leads to phonon sidebands is obtained when we consider

the exciton creation and annihilation. The exciton is localised in the small volume

of the QD and its presence affects the lattice equilibrium position. Upon photon

absorption the lattice deforms (polaron formation) to reach the new equilibrium

position, and the process repeats when the exciton recombines. The deformation

process is fast (high bandwidth), meaning that the interaction with phonons is

strong on this first very short timescale and weak thereafter.

The phonon dispersion of longitudinal acoustic phonons is linear for small wavevec-

tors and the density of states is proportional to the square of the phonon energy.

The form factor determines which wavevectors are coupled via the deformation

potential. The range of phonon energies involved is given by the spatial extent

of the electron and hole wavefunctions and thus linked to the shape of the QD:

smaller QDs probe a wider range of frequencies than larger QDs and should there-

fore couple more strongly to acoustic phonons. Intuitively we can understand this

as an averaging of the carrier-phonon interaction over the size of the QD: when

88



the phonon wavelength is considerably shorter than the smallest extent of the

QD, its effect will not be felt. In the emission spectra of Fig. 4.11 the size of

phonon sideband directly reflects the range of acoustic phonon frequencies that

contribute to the interaction. Further, the sideband is very strongly asymmetric

with almost its entire weight on the lower energy side of the zero-phonon line.

This can be linked to the phonon occupation probability which is governed by

the Bose-Einstein distribution:

n (q) =
1

e~ω(q)/kbT − 1
. (4.16)

At 4.2 K kbT (kb being the Boltzmann constant) corresponds to 0.36 meV. The

probability of absorption of a phonon with energy ~ωq is proportional to the

occupation number n (q), while the emission of a phonon goes as n (q) + 1. At

low energies the emission process is overwhelmingly more likely than absorption.

Hence the QD fluorescence is shifted to the red as some energy is taken away by

phonon emission.

Figure 4.11 a and c show the emission spectra (normalised to the peak intensity)

for the neutral exciton transition X0 (a) and for the charged exciton transition

X1− (c) driven at about twice their saturation powers. The similarities of their

spectra is confirmed in Fig. 4.11 b, where both spectra are displayed on the same

scale by subtracting the energy of the zero-phonon line peak. The similarity ex-

tends over the entire spectrum, even the small hump at 1 meV is consistent for

both transitions. We can conclude that the interaction with acoustic phonons

takes place exclusively in the excited state, and the presence of an additional

charge carrier does not affect the interaction.

The weight of the phonon sideband relative to the total emission intensity is con-

sistently around 12% for different QDs. The existence of a strong phonon side-

band provides an explanation for the limited constrast in first-order coherence

measurements of the QD resonance fluorescence (cf. Fig. 4.4): The coherence

time of the sideband photons is inversely proportional to the sideband width and

can only be detected in a range of a few ps around zero time delay.

Figure 4.11 d shows a close-up of the X0 phonon sideband in linear scale for

an excitation power significantly above saturation. An additional weak peak is
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Figure 4.11: Acoustic phonon sidebands in QD resonance fluorescence. a, spectrum
for X0 transition. c, spectrum for the X1− transition. b, Comparison of the two. d,
Phonon-assisted two-photon processes appear for strong excitation powers.
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present in this spectrum and its energy corresponds to the biexciton line of the

QD. It is only detected for high excitation powers (> 10 × s) and the intensity

grows as the square of the excitation power. This points to a two-photon absorp-

tion process, where the emission of an acoustic phonon bridges the energy gap

between the exciton and the biexciton state.

The details of the phonon sidebands will not be discussed further here. Consider-

ing the implications for QIP with QD resonance fluorescence we have to consider

that sideband photons have very short decoherence times (∼ ps) and are not

suitable for interference applications (such as distant entanglement through in-

terference). In these cases the QD fluorescence has to be filtered to exclude the

phonon sideband. Where only the fluorescence intensity matters, as it is the case

for state readout there are no negative effects.

We also note that the contribution of the phonon sideband to the fluorescence

can vary considerably between different samples. For instance Konthasinghe et

al. report a sideband contribution of 5% [125]. Finally, given the very good

signal-to-noise ratio with which we resolve the sideband, resonance fluorscence is

a suitable technique to study exciton-phonon effects in QDs.

4.2.2.2 Phonon-broadening of the zero-phonon line

In the previous discussion of phonon coupling we focussed on the acoustic side-

bands. These are satisfactorily explained considering a Hamiltonian linear in

the phonon displacement [134], and good quantitative agreement to experimen-

tal data can be found for realistic (i.e. non-Gaussian) wavefunctions [139]. The

model does not predict a broadening of the zero-phonon line itself, however, while

this was observed in the first experiments already [130; 131]. The broadening as

a function of lattice temperature can be recovered in a theoretical treatment that

accounts for a quadratic coupling to acoustic phonons [136].

Recently, an additional excitation power-dependent dephasing has been found in

several experiments under resonant excitation [110; 115; 116]. The importance of

this excitation-induced dephasing is significant: ultrafast optical control of spin

qubits relies on the optically excited state to achieve fast spin rotations via virtual

transitions [22; 42]. For excitonic qubits (see Ref. [140] for example) it is the
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coherence between ground and excited state that has to be addressed optically

and it is therefore strongly sensitive to such a mechanism.

Excitation-induced dephasing has been treated theoretically [115; 116; 141; 142]

and explains published experimental data well. The additional dephasing is a

consequence of Rabi oscillations under high power resonant excitation excitation.

Rabi oscillations dress the two-level system such that three optical transitions

are created. The size of the splitting of ground and excited state is given by

the Rabi frequency Ω and achievable Rabi frequencies are in the energy range

where acoustic phonons couple to the QD exciton. The presence of the addi-

tional levels enhances phonon transitions at the Rabi frequency. For a range of

Rabi frequencies ∼ few GHz < Ω < ωc, where ωc is the cutoff frequency for QD

exciton-phonon coupling, the dephasing is predicted to behave as the square of

the Rabi frequency.

Measuring the excitonic coherence (through the spectrum or the first-order corre-

lation function) for Rabi frequencies in this regime is experimentally challenging

as the signal, given by the QD fluorescence, is limited to its saturation value,

while the laser background increases (without bound) as the square root of the

Rabi frequency. To extract information about dephasing times with less strict

conditions on signal-to-background ratios one can chose to measure part of the

spectrum only, e.g. the Mollow triplet sidebands [110]. These are spectrally re-

moved from the excitation laser background and their width is related to the

dephasing time.

Here we present measurements of the full first-order correlation signal from a

single QD driven in continuous-wave mode. Rabi oscillations can be recorded in

a time-resolved fashion via the first-order correlation and the decay of the oscilla-

tions is directly linked to the dephasing time T2. Performing these measurements

is possible in our case due to the good suppression of laser background (cf. Fig.

4.1). Additionally, at laser powers where s ≥ 200 we modulate the QD resonance

between on- and off-resonance with respect to the excitation laser using the DC

Stark effect. Phase-sensitive detection is then employed to pick up the QD reso-

nance fluorescence contribution. The modulation speed is on the order of 1 KHz

and serves to eliminate fluctuations in the laser background during the course of

an interference fringe measurement (see section 3.4.2 for the measurement pro-
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tocol). Using this technique we recover the original resonance fluorescence signal

provided there is no interference between laser leakage and the QD signal, i.e.

the coherent fraction Fcoh � 1. This condition is well satisfied for excitation at

zero detuning and s > 100.

Figure 4.12 a-j presents a series of first-order correlation measurements on the

X1− transition of QD ‘Claude’. Blue squares represent experimental data and

the red line is a fit according to Eq. (4.5). The values for the main fit parameters,

the Rabi frequency Ω and the dephasing time T2, are indicated in each panel. To

relate the Rabi frequency to the saturation parameter used in previous sections,

Fig. 4.12 a is for an excitation power of s ∼ 10, and Fig. 4.12 j for s ∼ 4000.

The oscillations in the visibility of g(1) are the signature of Rabi oscillations:

Starting with the maximum visibility at zero time delay1 a π rotation of the two-

level system is obtained when the visibility reaches the first minimum. A revival

of visibility follows until we reach a time delay corresponding to a 2π rotation,

where the fringe amplitude is maximum again.

The agreement between data and theory is remarkable for intermediate Rabi fre-

quencies (Ω ≤ 4GHz) and a trend of decreasing T2 times with increasing power

is clear. At higher Rabi frequencies differences to the fit function appear, most

visible at longer delays and highest powers. Figure 4.12 i contains data for longer

delays and is a particularly clear example: Here the amplitude of the coherent

oscillations goes through a minimum, while maintaining an intermediate level of

coherence. At longer delays the oscillations pick up again, but the phase is flipped

by π. The presence of this additional beat note in the data points to more fre-

quency components in the spectrum than accounted for in the fit function, which

is for an ideal two-level system. Since the data is based on the fluorescence from

a singly charged QD (the X1− transition), a likely reason for the beating is a

nuclear Overhauser-split ground state. We will confirm this suspicion in the next

section and ignore it for now. To be able to extract meaningful numbers for the

T2 time the fits to the data are made to fit the amplitude of the Rabi oscillations

after the beating. Still, this is a caveat for the data interpretation. A proper

treatment would account for the effect of the nuclear field, but this is beyond the

1The amplitude of the first-order correlation around zero time delay is limited by the phonon
sideband contribution, as discussed earlier.
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Figure 4.12: First-order coherence measurements for theX1− transition of QD Claude
under strong resonant excitation. Data is shown as blue squared, error bars are indi-
cated by vertical lines. Fits according to Eq. (4.5) are shown as continuous red lines.
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scope of this section (and this thesis1).

In Fig. 4.13 we summarise the findings from the first-order correlation measure-

ments. Panel a shows the power dependence of the pure dephasing rate

γp =
1

T2

− 1

2T1

. (4.17)

Data are shown as open triangles. The upwards pointing red triangles were ob-

tained from g(1) measurements taken in the space of a few days (in between two

helium refills of the cryostat) such that the optical alignment was very similar.

The downwards pointing blue triangles originate from different data sets. First,

before going into details on the exact dephasing behaviour, we note there is a

marked dependence of the dephasing rate on the Rabi frequency: In the range

studied here, the dephasing rate increases (within the scatter of independent mea-

surements) monotonously with Rabi frequency over one order of magnitude, from

γ (Ω ≈ 1 GHz) ∼ 25 MHz to γ (Ω ≈ 20 GHz) ∼ 260 MHz.

Two black lines, one dashed and one dotted show fits to the data: The dashed

line assumes a parabolic dependence on the Rabi frequency with a constant offset

(no linear term), while the dotted line is based on a linear dependence with a con-

stant offset. For Rabi frequencies below 10 GHz the linear function matches the

data well, but strongly deviates at higher frequencies. In contrast, the quadratic

function (dashed) yields good agreement only at higher Rabi frequencies (Ω >

few GHz). The constant term in the fit overestimates the dephasing significantly

as we go towards small Rabi frequencies. In the inset the same data is shown, but

with the abscissa scaled as the square of the Rabi frequency. Here we can see,

perhaps more clearly, that the dephasing rate is approximately linear in Ω2 at

higher powers and deviates from this behaviour at lower powers. This deviation is

at odds with the expected Ω2-dependence predicted by acoustic phonon-coupling

and currently there is no intuitive explanation. We note that the effect of the

Overhauser field at different excitation powers is not clear: The beating is obvious

at high Rabi frequencies, but the beat note shifts to lower frequencies at lower

powers. Further, the regime where the dephasing rate fits a linear Ω dependence

is not covered in the published experimental investigations [110; 115; 116].

1at this point
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Figure 4.13: Power-dependence of pure dephasing rates from the data in Fig. 4.12.
a, Pure dephasing rate as a function of Rabi frequency (inset: as function of squared
Rabi frequency). Dashed line: fit according to a + bΩ2. Dotted line: fit according to
e + dΩ. b, Number of 2π oscillations within the dephasing time as a function of Rabi
frequency.

Finally, panel b of Fig. 4.13 illustrates the consequences of excitation-induced

dephasing for coherent control schemes that involve QD excitonic states. Here

we show the product of the dephasing time T2 and the Rabi frequency Ω. This

quantifies the number of full (2π) Rabi oscillations performed within the dephas-

ing time. In the absence of excitation-induced dephasing the data should follow

a straight line. In contrast, the product saturates within the accessible range

of Rabi frequencies, reaching a maximum rotation of 9 × (2π). Extrapolating

this trend to even larger Ω, the product should decrease until the Rabi frequency

exceeds the cut-off frequency of the exciton-phonon coupling. The cut-off can be

estimated from the peak of the phonon sideband in Fig. 4.11 as ωc ∼ 1 meV ≈
250 GHz. For QIP applications it is of course desirable to operate at Ω � ωc,

however reaching these powers is not feasible in cw with current sample struc-

tures. Excitation with ps pulses may allow us to reach this goal in the foreseeable

future.

Overcoming the issue of dephasing due to phonon coupling with very strong ex-

citation is one option. Another interesting approach would be to engineer the

density of phonons states, for instance through microfabrication [143].
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Figure 4.14: Emission spectra of resonantly driven X0 (a) and X1− (b) transitions.
The excitation power is such that ≥ 90 % of the scattering should be coherent.

4.2.3 Nuclear Overhauser field

The effects of the nuclear spin bath on properties of a single resident electron spin

in a self-assembled QD were discussed briefly in the introductory chapter. Here we

present the experimentally observable signatures of the nuclear Overhauser field

in the resonance fluorescence emission spectra of a single QD. The effect is most

accessible when we excite weakly, far below the saturation power, but present at

any excitation power. We start the discussion by comparing the emission spectra

in Fig. 4.14 of the X0 and X1− transitions from the same QD (‘Claude’) at simi-

lar excitation conditions. The X0 spectrum shows the familiar resolution-limited

coherent Rayleigh peak. The X1− spectrum sports two sidebands in addition,

spaced roughly symmetric about the Rayleigh peak and centred at ± 200 MHz.

To understand the origin of the sidebands we have to consider the optical level

structure of the trion transitions in the presence of the Overhauser field.

For any orientation the Overhauser field may be decomposed into two compo-

nents, see the left-hand side of Fig. 4.15: a Faraday-like field parallel to the

optical axis (out-of-plane), and a Voigt-like field which is orthogonal to the op-

tical axis and can point in any in-plane direction. We note that the comparison

to Faraday and Voigt configurations is not entirely accurate. The ground states

split in the same way, but the analogy is not valid for the excited state, where

any splitting is due to the heavy-hole response to the field. Given the vanish-

ing Fermi contact hyperfine interaction for hole spins the excited state splitting
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Figure 4.15: Influence of the Overhauser field on the transition selection rules. The
out-of-plane component gives rise to Faraday-configuration selection rules, while the
in-plane components give rise to Voigt configuration selection rules. For a Faraday
field we expect a single emission frequency in the Heitler regime, while three emission
frequencies are available in Voigt configuration.

is negligible. For convenience we continue the analogy with Voigt and Faraday

components, however. The Faraday component splits the X1− into two circularly

polarised transitions with little cross-talk (branching ratio ∼ 200:1). Changes

in the Faraday component of the Overhauser field change the splitting between

the two transitions. For instance, if the Faraday field were to switch direction,

the transition energies would switch (see sketch on the top right-hand-side of

Fig. 4.15). The exciting laser is linearly polarised and its energy corresponds

to the mean of the two transitions, i.e. the transition energy in the absence of

the Overhauser field. Considering the weak excitation limit where coherent scat-

tering dominates we expect to scatter Rayleigh photons from either of the two

transitions with equal weight. Raman scattering is not allowed by the selection

rules and only occurs rarely. Hence the spectrum should be similar to the X0

spectrum: we expect a single peak at the laser frequency.

The electron g-factor is isotropic so a Voigt field splits the spin ground state as

before (cf. sketch at the bottom right-hand side of Fig. 4.15). For holes in our

sample the valence band mixing is small [26; 28] and hence the in-plane g-factor

is small. At the same time the hyperfine interaction with the nuclei is weak as

the hole orbitals have p-symmetry. With the resulting negligible excited state
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splitting the level structure can be approximated by a Λ-system: both ground

states couple equally to the excited state. The transition energies vary with the

magnitude of the Voigt Overhauser field and the in-plane direction determines

the linear selection rules with respect to the laser polarisation: the two transitions

are orthogonally polarised (indicated by L and L̄ in the sketch) for any in-plane

direction, but the exact polarisation state varies with the azimuthal angle. For

weak excitation both transitions still scatter Rayleigh photons, but at the same

time coherent Raman scattering into either ground state is allowed, such that

three optical frequencies exist. While the energy of the Rayleigh scattering is

fixed by the laser, the Raman photon energy is determined by the ground state

splitting. For a given Voigt field we expect Raman photons blue and red detuned

from the Rayleigh peak by half the ground state splitting. A Voigt field with a

fixed magnitude then gives rise to three narrow (subnatural linewidth) peaks. As

the Voigt Overhauser field evolves it changes the ground state splitting and the

energy difference between Raman and Rayleigh scattering follows. The resulting

spectrum should feature two symmetric and extended Raman sidebands1.

The X1− spectrum from Fig. 4.14 b can be qualitatively explained when both

out-of-plane and in-plane nuclear Overhauser fields are considered. To verify this

picture and gain quantitative insight on the nuclear field amplitude Jack Hansom

and Claire Le Gall have developed a numerical model to calculate the emission

spectra of the four-level trion system in the presence of a Gaussian nuclear field.

The model shall not be explained here in detail as it is not my work (see Ref.

[144]). Here it is used to compare simulation results to a few experimental spectra.

Figure 4.16 shows X1− spectra obtained for QD ‘Claude’ at different excitation

powers (experimental data as green squares). Emission spectra are calculated

for a range of Overhauser field variances. In the calculation the field variance is

varied in steps of 10 MHz (corresponding to ∼ 2.5 mT magnetic field) up to 200

MHz (∼ 50 mT) while experimental parameters (e.g. excitation parameter s and

lifetime T1) are fixed. We display three theoretical curves for each experimental

spectrum: a best-fit is shown as continuous red curve, a dashed curve for a vari-

ance about 100 MHz and a dotted curve for a variance of 200 MHz.

The main features of the measured spectra are well reproduced for a nuclear field

1this holds for detuned excitation we well
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Figure 4.16: Emission spectra for resonantly excited X1− transition at zero external
magnetic field. Data (green squares) are measured with a scanning Fabry-Pero cavity
of ∼ 30 MHz resolution. The continuous curves (red, black dashed, black dotted) are
results from simulations for a four-level system and Gaussian nuclear field variance.
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variance of ∼ 140-160 MHz corresponding to ∼ 25 mT. The emission spectra are

most sensitive to the Overhauser field for weak excitation and the pronounced

sidebands allow accurate determination of the variance. At higher excitation

powers the effect of the nuclear field on the emission spectra is visually less strik-

ing than in the low power limit. Here, the central peak of the Mollow triplet is

broadened and the sidebands assume an asymmetric shape in addition to being

broadened. We note that in panels g and h, the sidebands appear to split into

two peaks, while the simulated spectra are always single-peaked and smooth.

This points to a non-Gaussian field distribution, possibly due to a laser-driven

dynamic spin polarisation [35]. An actual splitting of the sidebands would be

consistent with the beating observed in the first-order coherence measurements

at very high excitation powers (cf. Fig. 4.12).

In conclusion, the emission spectra of the negatively charged trion transition can

be well explained by taking a fluctuating nuclear Overhauser field into account.

Conversely, the resonance fluorescence spectra serve as a direct and sensitive

probe for interactions with the nuclear spin bath. Along these lines it may be

interesting to measure the positively charged trion transition to investigate hole-

nuclear spin dynamics [109; 145]. Finally, we note that the Overhauser field could

be used as a resource for coherent control of spins in the absence of an external

field [144].

4.3 Detuned excitation: quantum to classical

Rayleigh scattering

The correspondence principle states that in some limit, usually for large particle

number or high temperature quantum effects are masked and classical physics

can describe a system adequately. When considering resonant light scattering,

the limit of strong excitation gives rise to Rabi oscillations and the Mollow triplet,

manifestations of quantum coherence between the optically coupled levels. At low

driving powers however, the coherent part of resonance fluorescence dominates

(resonant Rayleigh scattering) and the spectrum corresponds to that of a classi-
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cal driven harmonic oscillator. The statistical properties of the fluorescence still

remain profoundly quantum mechanical though: antibunching is observed at all

excitation powers. This interesting property was discussed earlier. Rayleigh scat-

tering is usually thought of as a classical effect and antibunching is not expected.

A trivial reason not to observe antibunching is that Rayleigh scattering is rarely

measured on the single-particle level, but as we shall see there is more subtle

physics going on.

Where antibunching signifies the quantum-ness of single two-level systems, a

second-order correlation of unity is reserved for coherent fields, i.e. lasers. Clas-

sical fields are thermal and this is characterised by a bunching behaviour in the

second-order correlation: g
(2)
thermal (τ → 0) > 1. Rayleigh scattering is usually as-

sociated with a strong detuning (many linewidths) of the polarising field from

the atomic resonance. Large excitation detunings provide an alternative way (to

low power resonant excitation) to generate elastic scattering. More precisely, for

detunings 2πδ > 1
T2

√
1 + s, i.e. detunings greater than the half-width at half

maximum of the absorption linewidth, elastic scattering becomes dominant, even

at high driving powers. We will use a QD to investigate off-resonant elastic scat-

tering in the single-emitter limit.

Here we use the QD X0 transition (of QD ‘Isidor II’) and set the excitation

power to the saturation value (s=1) to have a a decent signal strength while

avoiding to dress the two-level system. Figure 4.17 a shows the QD fluorescence

spectrum in a semi-logarithmic scale for a set of detuning values between ∼ ±1

GHz. Two of the experimental spectra are highlighted to illustrate the effect of

detuning. Close to resonance (dark blue shaded spectrum, δ ∼ 50 MHz) coherent

and incoherent parts exist with roughly equal strength. As detuning is increased

the broad incoherent component dies away, and at δ ∼ 750 MHz the coherent

peak alone remains visible. Figure 4.17 b displays the theoretical prediction for

the dependence of the coherent fraction on detuning (for s=1, T2 = 1.9T1) in the

absence (red dashed line) and in the presence of spectral diffusion (blue line).

The coherent fraction of the total fluorescence Fc behaves as
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Figure 4.17: Dependence of emission spectra and coherent fraction on detuning of
the excitation laser. a, Emission spectra for X0 transition for s = 1 on a logarithmic
intensity scale. The coherent fraction increases strongly with laser detuning. b, The-
oretically expected detuning dependence of coherent fraction in the presence (dashed
red) and absence (blue) of spectral diffusion for s = 1 and T2 = 1.9T1.

Fc =
(2πδ)2 T2 (2T1)−1 + (2T1T2)−1

(2πδ)2 + (1 + s)T−2
2

(4.18)

as a function of detuning. In analogy to the spectral diffusion model used before,

the expression is modified to

Fc,diffusion (δ) =

∑
∆

Fc (∆)× L (∆)×W (∆FWHM,∆, δ)∑
∆

L (∆)×W (∆FWHM,∆, δ)
. (4.19)

In general, the coherent fraction is enhanced at small detuning δ ∼ 0, and de-

creased at larger detuning.

The intensity autocorrelation g(2) is recorded for each detuning |δ| in Fig. 4.17

a. Figure 4.18 displays four representative measurements with detailed fit func-

tions. The top panels contain the data as dark red curve with grey shading. The

blue continuous curve is a convolution of the theoretical expression based on Eq.

(2.31) and including spectral diffusion (see Eq. 4.14) and the system response

function (cf. Fig. 3.16). The deconvolved fit is plotted as dashed black curve.

For clarity the convolved (middle panels) and deconvolved (bottom panel) curves

are displayed again without the data in the lower panels. Here, the blue curves

are based on the fits to the data, while the red curves neglect spectral diffusion,
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but use the same parameters otherwise.

The detuning modifies the effective Rabi frequency according to Ω̃ =
√

Ω2 + (2πδ)2,

where Ω = s/ (T1T2) is the bare Rabi frequency. In the limit of large detuning,

i.e. large effective Rabi frequency, the amplitude of the coherent oscillations in

the intensity autocorrelation is not centered around unity, unlike in the case for

large Rabi frequencies at zero detuning. In the latter case the oscillations go from

zero at τ = 0 to two after a π rotation and decay symmetrically around unity

within the coherence time T2. With a large excitation detuning the intensity

autocorrelation can exceed the value of 2, which is the τ = 0 limit for chaotic

light. The deconvolved fit to the data in Fig. 4.18 crosses this limit. As the

detector resolution is finite, the contrast of the oscillations washes out and we

average between peaks and troughs. For the largest detuning presented here, δ ∼
810 MHz, the antibunching signature has almost completely vanished and the

autocorrelation is dominated by the first peaks on either side. The data might

be described more accurately as bunching, instead of antibunching !

This discussion may seem a bit artificial here; of course the fluorescence is still

antibunched - as it always is for a single two-level system. It is the timing resolu-

tion that prevents us from measuring this part. Extending the scheme from Fig.

4.18 further in experiments is challenging, since the signal is strongly reduced for

large detuning and the data acquisition becomes unreasonably long. To complete

the picture we keep the theoretical prediction only and set the detuning to twenty

times the natural linewidth. The result is presented in Fig. 4.19. The amplitude

of the oscillation approaches four around τ = 0. Averaging over an oscillation

period gives a simple curve

g(2) (τ)averaged = 1 + exp−|τ |/T2 (4.20)

which is consistent with the behaviour of a classical light source.

The apparent bunching in the fluorescence can be explained intuitively1 with

higher-order corrections to Rayleigh scattering [69]. We note that off-resonant

QD excitation and sideband correlations were explored in the strong excitation

regime by Ulhaq et al. [146].

1i.e. no quantitative analysis will be given
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Figure 4.18: Second-order correlation functions for finite detunings. Top panels:
data (noisy red, grey shading) with a fit (blue curve) taking into account spectral
diffusion and the system resolution and the deconcolved fit (dashed black). Middle
panels: Convolved fit with (blue) and without (red) spectral diffusion. Bottom panels:
deconvolved fit with (blue) and without (red) spectral diffusion.
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Chapter 5

Optical manipulation of electric

fields and quantum dot

electrometry

It has been observed by a number of groups working on resonant QD spectroscopy

[58; 81] that the QD transition shifts as a function of the resonant excitation

power. This effect has not been explored in detail, to my knowledge, but is im-

portant in the context of coherent optical spin manipulation [22], as resonance

shifts in the optical transitions lead to phase shifts in the spin evolution. If not

properly accounted for, this is a source of dephasing.

Here, we study the power dependence of resonance shifts in the steady-state, i.e.

under continuous-wave illumination, and time-resolved shifts under pulsed excita-

tion. Ruling out laser-induced heating we identify charging of the heterostructure

via optical absorption in the QD gates as the cause. The effect may be exploited

for fast spectroscopy, or optical switches.

Data acquisition and analysis for this chapter has benefited from collaboration

and discussion with the members of the QD team. In particular, I am grateful

to Martin Geller for fruitful discussions on thermometry and how to measure

of the Fermi-Dirac distributions. Rob Stockill contributed to the thermometry

and electometry measurements. I am grateful for the patience of other QD team

members while these measurements were taken.
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Figure 5.1: Shifts of QD resonance as a function of resonant excitation power. a,
Series of absorption lineshapes obtained by scanning the gate voltage across the X0

transitions for different laser powers.b, Summary of resonance shifts as function of
power. For the red data points the power is decreased in subsequent measurements,
while it is increased for black data points. The dashed line is a fit according to Eq.
(5.1).

5.1 The observation

5.1.1 One-colour steady-state measurements

In this section we describe the observation of laser-induced resonance shifts and

quantify the magnitude of the shifts. Figure 5.1 a shows a series of absorption

lineshapes of the neutral exciton transitions (QD ‘Isidor II’) for different exci-

tation powers. We keep the excitation laser frequency fixed for all powers and

scan the gate voltage across the two resonances. Knowing the Stark shift (∼ 410

MHz/mV) the gate voltage is translated into frequency again. For the range of

powers displayed the QD resonance shifts by almost 2 GHz, which exceeds the

transition linewidth by far. Panel b shows the frequency shifts over five orders

of magnitude in excitation power on a semi-logarithmic scale. For reference, the

saturation point (s=1) corresponds to about 10 nW power incident on the QD

sample. Data from two sets of measurements are presented. For the red data

points the excitation power of successive line scans was approximately halved

(i.e. starting at higher powers), while we doubled the power with each scan for

the black data points. If the shift were to originate from a QD-intrinsic property

we would expect to see a saturation behaviour as the QD is strongly driven. This
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is clearly not the case. On a semi-logarithmic scale, the resonance shifts follow a

straight line. A fit to the data using the empirical model

νres = νp=s + a× ln (p (s)) (5.1)

is shown as dashed black line. The constant in Eq. 5.1 gives a reference frequency

and the constant of proportionality is a ≈ −270 MHz. This corresponds to a

redshift of the QD transition of approximately one radiative linewidth every time

the power is increased by a factor 2.5. Over the range of powers studied there is

no significant deviation from the logarithmic dependence.

5.1.2 Modulated shifts: Two-colour steady-state

We can repeat the measurement, but this time keeping the resonant laser power

fixed while adding a second laser. This second laser, denoted pump laser, is

strongly red-detuned from the QD excitonic resonance (by about 15 nm). Its

energy is then also far below the bandgap of GaAs and the wetting layer. We use

a grating to remove the pump laser from the detection path. Figure 5.2 a shows

a two-dimensional plot of the X0 lineshapes as function of the pump laser power.

The first data column in the plot shows the case where only the resonant laser,

now called probe laser, is incident on the sample. Then the pump laser is added

and its power is doubled with each column. The QD transition frequency shifts

in a similar fashion to the single colour experiments of Fig. 5.1. We conclude that

the resonance shift depends on total (below bandgap) laser power incident on the

sample, regardless of the detuning to the QD transition: it is not a resonance

phenomenon.

Next, we investigate the bandwidth of the resonance shifts. To this end, the probe

laser is kept operating in continuous-wave mode while the pump laser amplitude

is modulated (modulated depth of 1) by a square wave of variable frequency. The

corresponding data is shown in 5.2 b. Here, the peak power of the pump laser

is 12 times higher than the probe laser power. At low modulation frequencies

four transitions are distinctly visible: the fine-structure split X0 transitions jump

between their steady-state resonances at the two power levels. Going to faster

modulations first broadens the individual transitions and then smears out the
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Figure 5.2: Two-colour shifts of QD resonance. a, the resonant laser (probe laser)
is kept at constant power and the X0 lineshapes are measured as a function of the
strongly detuned pump laser power. b, The probe power is constant and the pump
laser amplitude is modulated on and off for a range of modulation frequencies.

transition between the steady states. At a modulation frequency of about 1 KHz

only two transition frequencies remain and a new steady-state is reached: The

modulation exceeds the bandwidth of the laser-induced shifts, and the response

corresponds to that for a time-averaged incident power.

5.2 The origin

We consider two mechanisms that could lead to resonance shifts as a function of

incident power: build-up of an electric field and local heating of the sample due

to residual absorption. First we discuss sample heating and QD thermometry.

5.2.1 Temperature

It is well known that increasing the temperature of a semiconductor leads to

shrinkage of the band gap, due to thermal expansion of the lattice and increased

electron-phonon scattering. This is observed as a red-shift in the optical emission

from semiconductors, both for bulk and confined states. For a wide tempera-

ture range the famous empirical Varshni model [147] describes the band gap-

temperature relation well. Early measurements on QD ensembles seemed to con-

firm the validity of the model [148]. At very low temperatures deviations from
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the Varshni model are apparent, however, and photoluminescent spectroscopy of

single QDs enabled accurate measurements here [149]. Recently, the temperature

dependence of the resonance frequency of single QDs has been measured in res-

onant transmission experiments by Kroner et al. [150] with very high resolution

(∼ µeV). They found a saturation of the resonance frequency for temperatures <

10 K. QD resonance fluorescence measurements as a function of temperature on

a different sample agree qualitatively while still resolving resonance shifts below

10 K temperature [151]. Close to the liquid helium temperature resonance shifts

remain small, however, in this case too. Based on these reference we can esti-

mate the change of temperature corresponding to our measured resonance shifts

to be on the order of several K (∼ 5 K). To confirm or refute local heating as

source of the resonance shifts we should attempt to measure the local temperature

independently.

QD Thermometry A possible indicator of the QD temperature was intro-

duced in the previous chapter: phonon sidebands in the resonance fluorescence.

The strength, and more sensitively, the shape of the sideband depends on tem-

perature as the thermal occupation of phonon modes changes [130; 131]. Power-

dependent sideband measurements do not show such a change in our measure-

ments however, despite the good quality of the data (cf. Fig. 4.11).

There is an alternative way to measuring temperature in our gated devices. The

back contact is made conductive by Si-doping and the chemical potential µF is

pinned at the dopant energy level. The broadening of the chemical potential is

given by the Fermi-Dirac distribution

nFD =
1

e(E−µF)/(kBT ) + 1
. (5.2)

If this broadening can be measured we have access to a primary thermometer. We

wish to probe the broadening with the QD ground state. The idea relies on carrier

thermalisation between the back contact and the QD ground state and is sketched

in Fig. 5.3: The occupation of the QD electronic ground state is linked to the

occupation in the back contact at the same energy. For instance, when the energy

of the QD one-electron state is more than kBT below the chemical potential the
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occupation

energy Vgate

μF

Figure 5.3: Sketch of the conduction band for part of the QD device. On the left is the
Si-doped back contact. The chemical potential µF is determined by the dopant concen-
tration. The occupation of electronic states in the back contact obeys the Fermi-Dirac
distribution which is shown as blue curve (occupation vs. energy) and additionally
indicated by the shading. The QD ground state (e.g. the single electron ground state)
is tunnel-coupled to the reservoir such that the occupation is in equilibrium with the
occupation in the back contact. Probing the QD ground state occupation as a function
of the gate voltage provides a way to map out the Fermi-Dirac distribution.

single electron is stable in the QD. Tunneling to and from the back contact does

not occur because no free states are available at this energy in the back contact.

When the QD one-electron energy level is raised to the chemical potential plenty

of free states are available in the back contact and the QD occupation of 0.5

reflects the occupation of the back contact. Increasing the reverse bias further

empties the QD as states of the same energy are not occupied in the back contact.

Continuing to use the example of the single electron ground state the occupation

of the ground state can be measured through optical absorption at the trion

transition energy. Sweeping the QD one-electron ground state energy through

the chemical potential via the applied bias and measuring the trion absorption

probability should then map out the Fermi-Dirac distribution.

Figure 5.4 a shows an exemplary two-dimensional voltage-frequency map of the

X1− resonance fluorescence intensity. The gate voltage range is chosen such that

the QD moves from the zero to the one-electron ground state. In Fig. 5.4 b

we plot the peak intensity for each data row from panel by fitting Lorentzians

to the gate voltage sweeps at fixed frequency. The abscissa scale is obtained by

translating the gate voltage into energy relative to the chemical potential using
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Figure 5.4: QD thermometry with resonance fluorescence. a, Gate voltage-frequency
map of the X1− transition. For low gate voltages the QD is empty and there is no signal.
As the forward bias is increased the QD ground state occupation moves smoothly from
0 to 1 electron and the resonance fluorescence signal is recovered - proportional to the
single electron ground state occupation. b, Plot of the resonance fluorescence intensity
as function of energy detuning between QD ground state and chemical potential. The
red line is a fit to the Fermi-Dirac distribution.

the lever arm method:

∆E1e, gs = e
dbarrier

ddiode

×∆Vgate, (5.3)

where the change in energy of the one-electron ground state E1e, gs depends on

the change in applied bias ∆Vgate and the ratio of distance between the back gate

and the QD layer (dbarrier) to the total length of the Schottky diode (ddiode). A

fit to the Fermi-Dirac distribution (Eq. (5.2)) is shown as red curve and gives

the temperature as 5.6 ± 0.2 K. It should be pointed out here that the lever

arm method is a first-order approximation and prone to systematic errors. In

particular, the distance dbarrier varies from the value specified for the growth as

charges from the doped back contact spill into the tunnel barrier and shorten the

distance. This leads to an overestimate of the temperature. Further, the laser

power should be kept constant throughout the measurement, also while scanning

the frequency. Stabilisation on the optical table is possible to considerably better

than 1 %, but the microscope beamsplitter transmission/reflection shows a fre-

quency dependence, which, depending on the particular frequencies, can give rise

to a 10 % change in power at the QD over ∼ 10 GHz. These systematic errors
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should not keep us from testing the laser-induced heating hypothesis though, as

long as conditions can be kept comparable in subsequent measurements.

In Fig. 5.5 we present an analysis of QD resonance maps with a resonant probe

and an off-resonant pump laser. The raw data is shown in panels a, b and c.

Here, the resonant laser is fixed at 0.05 of the saturation power and the pump is,

in order of the panels, absent, ten times the power of the probe and 100 times

the probe power (panels a-c respectively). The analysis follows the procedure

outlined above, and panel d displays the peak fluorescence intensity as function

of QD ground state detuning from the chemical potential. Data for the three

measurements and fits according to Eq. (5.2) are colour-coded: red corresponds

to the data in panel a, green to panel b and black to panel c. The similarity

between the data sets is striking and the temperatures given by the fits agree

with each other within their errors1.

To summarise: so far, we have not seen any evidence for laser-induced heating.

We would expect a temperature change of several K, but this is ruled out by

measurements of the Fermi distribution. However, the QD resonance maps of

Fig. 5.5 do provide us with evidence of laser-induced electric-fields that shift the

QD transition and this is subject of the next section.

As an aside, we note that Fermi distribution measurements with optically ac-

tive QDs may be used in thermometry applications. Here we obtain a precision

close to 100 mK. The accuracy is limited by systematic errors in the lever arm

calculation to about 2-3 K. A big improvement here could be a more accurate

determination of the effective tunnel barrier thickness dbarrier (see Eq. (5.3)),

for instance through cross-sectional scanning tunneling microscopy of the QD

heterodiode structure. For practical purposes, integrating a Schottky diode for

thermometry may not be convenient in some applications, and the required elec-

tric field can additionally affect the semiconductor environment. By nature the

QD thermometer is local, so to achieve a spatial temperature map we need to

measure a set of QDs at reasonably well-resolved positions. The spatial temper-

1We note the temperatures are different from what was obtained for the exemplary data
in Fig. 5.4. The current data set was recorded at a different time (time difference of some
weeks) and as such the alignment of the microscope was different, mainly in the excitation
polarisation. Consequently the frequency dependence of microscope beamsplitter reflectance
and transmittance differs for both measurements.
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Figure 5.5: QD thermometry in the presence of a pump laser. a-c, QD resonance
fluorescence maps in gate voltage-frequency space for pump powers of zero (a), ten
times the probe power (b), and 100 times the probe power (c). d, Peak intensities
versus detuning from the chemical potential, fitted with the Fermi-Dirac distribution.
Red data points and fit correspond to panel a data, green to panel b and black to panel
c. e, Position of QD resonance in gate voltage-frequency space for panels a-c. Positions
where the intensity exceeds 5, 10 and 20 % of the full intensity are highlighted.
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ature resolution is then given by the ability to map the QD locations. As for the

accessible temperature range, QDs are efficient emitters up to ∼ 50 K and this

limits the use to cryogenic temperatures. The main attraction of this method is

that we have a primary thermometer, that is, the thermometer does not require

calibration. We note that other methods, for example temperature-dependent

emission energy can be exploited for thermometry purposes (see Ref. [152] for a

review) and this principle has been successfully applied for colloidal II-VI QDs

[25].

5.2.2 Electric field

QD resonance shifts through temperature and electric-field changes can be told

apart by their dependence on the bias applied to the Schottky diode. If we

consider the 2D QD resonance maps in gate voltage and transition frequency

space (see Fig. 5.5 a-c) a temperature increase will push the entire transition to

smaller frequencies. The gate voltage range should remain unchanged, as it is

determined by the QD charging properties, which are tied to the applied bias.

In contrast, electric field changes (independent from the applied bias) should not

alter the transition frequencies, but shift it along the gate voltage axis. Going

back to the analysis in Fig. 5.5, we move to panel e. Here, we plot the QD

resonance positions from the 2D maps as lines. The colour code is indicated in

the legend and was already used in panel d. The resonance position is obtained

through Lorentzian fits to each data row of panels a-c. For ease of comparison,

three data points are highlighted for each measurement. These mark the positions

(in gate voltage/frequency) where the QD transition reaches ≥ 5, 10 and 20 %

of the full signal strength. Within the noise these positions occur at constant

frequency, but shifted gate voltage. Hence the observed resonance shifts can be

firmly attributed to a laser-induced change in the electric field felt by the QD.

When the pump laser shifts the QD resonance, the gate voltage needs to be

increased to recover the QD resonance. In our case the laser-induced electric field

counteracts the applied field, it acts to reduce it. Further, the reversibility and

‘smoothness’1 of the shifts suggests that it is not due to dynamics of local defects,

1and the reproducibility on different QDs
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but rather due to free carrier absorption in the gates of the heterostructure.

In the following section we will investigate details of the electric-field shift from an

electrometry point-of-view, with particular regard to the dynamics of the electric

field.

5.3 Time-resolved electric field dynamics and

QD electrometry

Here we turn to time-resolved measurements to obtain more information on the

bandwidth of the resonance shifts, and at the same time investigate the perfor-

mance of resonance fluorescence-based electrometry.

5.3.1 Considerations for QD electrometry

First, we discuss our results in the context of QD electrometry. Using the QD

resonance shifts as means to infer details about the QD environment was already

used in the investigation of spectral diffusion in section 4.2.1. To recap: changes in

the electric field around the QD act on the permanent dipole of the electron-hole

pair1 of excited QD states and as such translate to change in the QD transition

frequency. This Stark shift is linear in the range of electric field changes studied

here. The electric field sensitivity then depends on the change in optical signal

versus the noise in the detection.

The ability to probe electric fields using the optical response from QDs under

resonant excitation was explored in Ref. [24]. There, the use of homodyne detec-

tion in differential transmission and reflection schemes was advocated to pick up

on both DC and AC fields with a Lockin-Amplifier. Houel et al. used differential

transmission to locate the position of defects in the tunnel barrier close to a QD

[81]. The recent work by Kuhlmann et al. exploits resonance fluorescence to

measure electric (and nuclear) field noise timescales [127].

One strategy for using QD resonance fluorescence for electrometry is to set the

probe laser frequency at a detuning where the response to electric-field changes

1in particular in the growth direction
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is greatest. This detuning is given by the maximum of the first derivative of the

lorentzian QD absorption lineshape and corresponds to

δmax =
1

2π

√
1 + s

6T1T2

. (5.4)

Electric fields can be sensed if the signal change due to the QD resonance shift

exceeds the shot noise of the signal at the set detuning. If the QD photon de-

tection rate as a function of detuning ∆ and detection/collection efficiency η is

given by I(∆) = η × ρ22

T1
and the Stark shift coefficient by α, then electric field

changes δE for which

δE ≥
√
I (δmax)

∂
∂∆
I (δmax)× α

(5.5)

can be measured. To give an example using parameters from our system and

sample, for a typical QD with a natural linewidth of 250 MHz, a Stark shift

coefficient of 80 KHz (V/m)−1 and a combined collection/detection efficiency

giving 500 kcounts/s on resonance at saturation we obtain a theoretical electric

field sensitivity of

δE & 50
V

m

√
Hz
−1

(5.6)

In practice, some of this sensitivity is taken away by constant ‘sensing’ of spectral

diffusion. While this is in principle already electric field sensing, it reduces our

ability to detect electric field changes on top of this background.

A different strategy to electric field sensing is to scan across the QD resonance

while detecting photons and fit the absorption lineshape to obtain the exact QD

resonance. This approach, employed in the next sections yields experimental

sensitivities around 50 (V/m) /
√

Hz or better, on top of the uncontrolled spectral

diffusion and without operating under optimum conditions.

For the remainder of this chapter we will shift the focus back to investigating

the dynamics of the laser-induced electric field. For simplicity we will continue

working in units of gate voltages, but we keep in mind that the following results

are a practical application of electrometry: to convert the changes in gate voltage
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into electric field changes we just have to divide by the length of the QD diode

(185 nm).

5.3.2 Dynamics of laser-induced electric field

Measurement technique Measurements with a modulated pump laser were

introduced in Fig. 5.2. Now, the duty cycle of the modulated pump laser is

reduced (� 1) to allow the transition to relax back into its steady-state after the

pump pulse. We use an electro-optic modulator with high bandwidth (5 GHz)

modulated by a digital delay/pulse generator (SRS DG645) with a transition time

< 2 ns to create fast laser pulses and record time-resolved fluorescence detection

events with a time-to-amplitude converter (quTools quTAU). Figure 5.6 shows a

time-resolved map of the QD fluorescence for a pump pulse of 20 µs duration and

a repetition rate of 50 Hz. The probe laser frequency is fixed and time-resolved

data is recorded for 60 seconds at each gate voltage. Data acquisition is triggered

by the same pulse generator that drives the EOM and lasts in this case for 20

ms with a resolution of 200 ns. The top left panel shows the first 100 µs of the

raw data, where the pump pulse is incident after about 20 µs, while the top right

panel shows the remainder of the data, here binned to 2 µs resolution. In the

bottom panels we trace the QD resonance position, obtained through Lorentzian

fits for each time delay (200 ns resolution in both bottom panels).

The QD response to the pump pulse is characterised by a fast and monotonous

resonance shift during the pulse. Two timescales are present in this response

risetime; this will be discussed for higher timing resolution data presented later

on. Following the pump pulse, the transition drops rapidly to slightly lower gate

voltages and then slowly relaxes to its equilibrium position. The rapid drop is

instantaneous within the resolution of this data, while the slow relaxation hap-

pens on the order of milliseconds. Comparing these timescales to the bandwidth

measurement with a square-wave modulated pump in Fig. 5.2 we identify the

slow millisecond relaxation time as the dominant part: When the repetition rate

exceeds roughly 1 KHz, the transition does not relax back to its ‘unperturbed’

resonance and a new steady-state exists.
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Figure 5.6: Time-resolved response of QD transition to a pump pulse of 20 µs dura-
tion. Top panels show the raw data, bottom panels the QD resonance (in gate voltage)
which is obtained by fitting Lorentzians to constant-time cuts in the top panels. Top
left: pixel timing resolution of 200 ns, 0.6 ms integration per pixel. Top right: pixel
timing resolution of 2 µs, 6 ms integration. Bottom: Timing resolution of 200 ns in
both panels. The pump pulse peak power 400 times the probe power.
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Detailed dynamics Having introduced the experimental technique to mea-

sure the laser-induced electric field changes we take a closer look at the dynamics

now. The timing resolution in Fig. 5.6 was too low to resolve the the response

to the onset of the pump pulse, so here we use faster pump pulses and higher

timing resolution. In Fig. 5.7 we present data for pulses of nominally 2 and 10

ns duration. The plots on the left (a and c) show the system response functions

for the two pulses. These are measured by sending the pump laser only to the

QD and detecting part of its reflection into the collection fibre, using the same

equipment as for the time-resolved pump-probe experiments. For a rectangular

pulse of nominally 2 ns duration we obtain am approximately Gaussian shaped

pulse with a FWHM of 1.4 ns. The shape is determined almost entirely by the

bandwidth of the pulse generator. Panel b shows the dynamics of the QD res-

onance in a pump-probe measurement using the pump pulse from panel a. The

data is derived from a time-detuning map as before in Fig. 5.6. The response of

the QD resonance suggests that the pump-induced electric field follows the pulse

intensity closely, but the width of the feature (∼ 3 ns) is broader than the pump

pulse width. The fall time of the response seems to be slightly slower than the

rise time. Taking into account the original width of the pump pulse, the response

of the electric field felt by the QD is about 2.5 ns, corresponding to a bandwidth

of 400 MHz. Panels c and d of Fig. 5.7 display the pulse shape and the QD

resonance response for a pump pulse of nominally 10 ns duration.

Interestingly, the QD resonance displays an ‘overshoot’ behaviour: once the pump

pulse has passed, the QD resonance shifts slightly past its original resonance

into the opposite direction, before relaxing back to the original resonance setting

within 10-100 ns. This phenomenon may be related to a backaction of the charge

distribution in the QD gates after the quick build-up and discharge of the pump-

induced field, but this is not resolved at the moment.

To complete the picture we employ QD electrometry to look at laser-induced

fields for pump pulses with durations ranging from 100 ns to 200 µs in Fig. 5.8.

In each panel we show the dynamics of the QD resonance over the full time range

of the measurement in the main plot. The immediate response to the pump pulse

is shown in more detail in the insets of each panel. Here we highlight the timing

of the pulse and its duration by shading the respective area in the inset in green.
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Figure 5.7: Time-resolved QD electrometry for pump pulses of 1.4 ns (a, b) and 10 ns
(c, d) duration. a, c, Measurements of the pump pulse intensity profile. b, d, Response
of the QD resonance. The timing resolution in panels a-c is about 0.5 ns, limited by
the APD jitter. The timing resolution of panel d data is 1 ns. The integration time
per pixel for the original data for b is 25 ms and 5 ms for d.
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For a pump pulse of 100 ns (see Fig. 5.8 a) the response follows the rectangular

shape of the pump initially. Similarly to the data for shorter pulses presented

in Fig. 5.7 there is an overshoot immediately following the pump pulse. How-

ever, the response curve crosses the steady-state (0 mV on the ordinate axis) a

second time, reaches a maximum and only then decays monotonically back to

the equilibrium gate voltage. Increasing the pump pulse duration to 500 ns in

panel b we find clear differences between the intensity profile of the pump pulse

and the electric field response felt by the QD: After the initial fast rise of the

response curve (which follows the rise time of the optical pulse closely) the QD

resonance continues to shift in the same direction while the pump laser power

is constant, but at a much slower rate. In panel b this shift is approximately

linear in time. The sharp drop of the response curve follows the fall time of the

optical pulse again, but no overshoot is visible this time. Further increasing the

pump pulse duration to 2 and 200 µs in panels c and d, respectively, it becomes

obvious that the QD resonance approaches a new steady-state position during the

constant intensity part of the pump pulse. Here the behaviour is approximated

by a (1− exp(−t/τc)) dependence. The characteristic time scale τc is some tens

of microseconds (cf. panel d).

The slow final decay back to the unperturbed resonance shows a non-trivial depen-

dence on pump pulse power and duration. It varies from few tens of microseconds

to milliseconds for the data presented here. The decay is further influenced by

the finite repetition rate of the measurement scheme. For a detailed study of the

relaxation rate the repetition rate should be significantly reduced.

In conclusion, we have presented a detailed study of laser-induced QD resonance

shifts, quantifying both amplitudes and the timescales. Performing QD thermom-

etry and electrometry we have identified the origin of the resonance shifts as laser

absorption in the QD sample gates leading to the build-up of an electric field.

While this conclusion is perhaps less exciting it allows us to disentangle this un-

wanted effect from other experimental data. Further, the investigation confirms

the potential of optical electrometry, where resonance fluorescence enables high

sensitivity and high bandwidth operation. Finally, having identified the sample

gates as problematic, we can look into sample structures which avoid the issue.
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Figure 5.8: Tracing the QD resonance for pump pulses from 100 ns to 200 µs duration.
The inset displays the dynamics around the pump pulse in greater detail. a, 30 ms
integration time per time bin of 10 ns. b, as a. c, 15 ms integration time per time bin
of 50 ns. d, 60 µs integration time per 400 ns time bin.
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Chapter 6

Coherent single QD photons for

quantum optical networks

The ‘Quantum Internet’ envisions remote stationary qubits connected via fly-

ing qubits, where local operations and entanglement between the distant qubits

enables quantum computation. Quantum dots offer a natural solution where a

trapped spin encodes the stationary qubits, while resonantly scattered photons

can carry the spin information over macroscopic distances. The latter was re-

cently exploited to demonstrate spin-photon entanglement for QDs [53; 65; 66].

The missing link so far is an experimental demonstration of distant QD spin en-

tanglement. Distant entanglement has been successfully demonstrated for other

physical systems, most notably for trapped atoms [153; 154] and recently also for

the nitrogen-vacancy defect centre in diamond [155]. Entanglement is created by

interference and detection of two photons - each entangled with the host qubit

they originate from. This non-local entanglement based on photon quantum in-

terference has been identified as a promising and robust approach [156; 157]. The

robustness stems from the probabilistic nature of entanglement creation, placing

fewer constraints on detection efficiencies, but relies crucially and fundamentally

on indistinguishable photons from separate qubits: In the presence of pure de-

phasing or spectral diffusion photons become distinguishable and do not interfere.

Photon detection then erroneously heralds qubit entanglement. Coherent scatter-

ing from a QD provides an attractive way of generating dephasing-free photons,
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protected to some degree from spectral diffusion, and we investigate their poten-

tial for quantum interference here.

This chapter builds on the observation of subnatural linewidth QD photons de-

tailed in Chapter 5. Ref. [158] contains the publication of material from this

chapter. We first demonstrate that the coherently generated single photons from

a single self-assembled InAs quantum dot display mutual coherence with the ex-

citation laser on a timescale exceeding three seconds. Exploiting this degree of

mutual coherence we tailor the coherent photon waveforms by shaping the ex-

citation laser field. In contrast to post-emission filtering, this technique avoids

both photon loss and degradation of the single photon nature. By engineering

pulsed waveforms of single photons, we then demonstrate that separate photons

generated coherently by the same laser field are fundamentally indistinguishable,

lending themselves to creation of distant entanglement through quantum inter-

ference.

Results presented in this chapter stem from a collaborative effort of the QD team.

In particular, Carsten H. H. Schulte built the heterodyning setup and performed

and analysed the measurement on QD fluorescence - laser mutual coherence (see

Fig. 6.1). Martin Geller and Claire Le Gall contributed greatly to the long and

tiring process of getting to the stage of collecting good two-photon interference

data1.

6.1 Considerations for two-photon interference

QD photon coherence is affected by the generation process. Above bandgap exci-

tation, while technically easy to implement, relies on the incoherent relaxation of

excitons in the QD ground state and emitted photons suffer from pure dephasing.

This was confirmed by interference of two photons emitted by the same QD at

different times. Keeping this time separation to a few nanoseconds avoids spectral

diffusion affecting interference of the photon pair and interference contrasts of ∼
70% were reported [159; 160]. However, two separate QDs experience indepen-

dent environmental dynamics: the environmental noise is uncorrelated. In this

1This includes two-photon interference measurements with two independent quantum dots
during the autumn and winter of 2011-2012 which did not make it into this thesis.
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case two-photon interference from separate QDs using above bandgap excitation

showed only a modest contrast of 18 % [161].

Resonance fluorescence avoids optically exciting the host material and therefore

suppresses these dynamics. However, the ambient charge fluctuations, for ex-

ample, can still broaden a transition via spectral wandering as we discussed in

section 4.2.1. While not causing significant pure dephasing, the ‘wobble’ of the

QD resonance renders the use of QDs in a quantum optical network problem-

atic. Understanding the origin of these dynamics and eliminating them is a key

challenge. Alternatively, approaches to suppress their effects should be pursued.

6.2 Mutual coherence: Phase-locking of QD flu-

orescence to laser

Elastic scattering from an optical transition represents an alternative approach to

high quality photon generation, which avoids significant population in dephasing-

prone excited states. Unlike the spontaneously emitted photons, the elastically

scattered photons in the Heitler regime are expected to be phase-locked to the

excitation laser. This phase-locking translates to an ideally infinite mutual coher-

ence and accentuates their potential for quantum interference applications [162].

In well-isolated experimental systems, such as trapped atoms and ions, this mu-

tual coherence was observed via an optical heterodyning technique [163], which

allowed studying the broadening of elastic scattering due to motional and vibra-

tional dynamics [164; 165], when the species are driven by a single frequency laser.

The effect of environment dynamics, apparent through spectral wandering for in-

stance, can still limit the mutual coherence between the excitation laser and the

photons generated in the Heitler regime: QD resonance shifts translate to phase

shifts between the elastically scattered single photons and the excitation laser.

Therefore, phase-sensitive heterodyning measurements to determine the extent

to which phase-locking to the excitation laser occurs are necessary in order to

determine the suitability of these photons as flying qubits.

Figure 6.1 a shows the experimental arrangement used to perform optical hetero-

dyning measurements. QD resonance fluorescence at frequency ν superimposed
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Figure 6.1: Mutual coherence between QD resonance fluoresence and the excitation
laser. a, Illustration of the experimental arrangement used for optical heterodyning
of QD resonance fluorescence. Acousto-optical modulation (AOM) provides the shift
of the local oscillator frequency by δν 210 kHz. The outputs of the two photodiodes
(PD1,2) are subtracted electrically and sent to a spectrum analyser. b, Typical power
spectrum of the beating signal as a function of frequency relative to δν. Inset: high-
resolution spectrum for 5 s of continuous data acquisition. Spectra with sub-hertz res-
olution reveal phase coherence between QD photons and excitation laser on a timescale
of seconds.
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with a strong local oscillator originating from the excitation laser but shifted in

frequency by δν ∼ 210 kHz. This frequency difference results in a beat note

in the difference signal of two balanced photodiodes (PD1,2). A spectrum anal-

yser calculates the power spectrum via a fast Fourier transform (FFT) algorithm.

The linewidth and the lineshape of the power spectrum reflect directly the phase

stability, i.e. the mutual coherence, between the two fields during the course of

the measurement. In particular, periodic dynamics of the relative phase appear

as sidebands and aperiodic fluctuations appear as broadening of the spectrum.

Figure 6.1 b displays a representative raw spectrum with a strong peak at the

beating frequency. The inset shows that a Gaussian lineshape with a FWHM of

299 mHz fits the data of 5-second continuous acquisition. We note here that the

spectral bandwidth is partly due to the the system response resolution of 200 mHz

for the measurement settings and any external noise sources in the setup. Longer

acquisition time yields higher spectral resolution, hence narrower linewidths (e.g.

172 mHz for 10-second acquisition time), but phase fluctuations induced by the

mechanical instability of the setup (and any spectral diffusion) reduce the signal

quality and limit the obtainable linewidth.

Nevertheless, even these raw linewidths indicate that every photon is phase-locked

to the excitation laser with mutual-coherence time exceeding 3 seconds, which cor-

responds to a mutual-coherence length of one million kilometres. These results

confirm the prediction for an ideal two-level system that each photon inherits

fully the coherence properties of the excitation laser in this alternative photon

generation process. The absence of significant linewidth broadening in this mea-

surement confirms that the main contribution to spectral diffusion for our sample

(and this QD) occurs on timescales of seconds or slower.

6.3 Photon shaping

Methods currently available to control single photon wavepackets include direct

spectral filtering of the photons [166] and phase [167] or amplitude [168; 169] ma-

nipulation via photon transmission through electro-optic elements. Wavepacket

control during the photon generation process has only been achieved for trapped

atoms inside optical cavities using multi-pulse sequences [170; 171].
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Figure 6.2: Tailoring waveforms of single photons. a, The intensity of the excitation
laser is modulated in time using an electro-optic modulator driven with a 200-MHz sine
wave. b, The spectrum of the modulated laser, measured through a FabryPerot cavity
(resolution ∼ 20 MHz), shows sidebands at the modulation frequency. c, d, A different
waveform modulation with the corresponding spectrum for the laser. This waveform
is designed to suppress the spectral component at the original carrier frequency. e, f,
Measured spectra of the QD photons generated from the two synthesized laser wave-
forms given in a, c, respectively. The elastically scattered photons replicate the laser
spectrum within the linewidth of the transition, which is indicated by the shaded grey
area.
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The coherent nature of elastic scattering provides a means for coherent synthesis

of single photon waveforms directly in the photon generation process without the

need for spectral filtering or optical cavities. In order to demonstrate this ability,

we use an electro-optic modulator (Jenoptik AM980) driven by a sine wave signal

generator (Rohde & Schwarz SMF100A) to encode the excitation laser field. The

throughput I of the EOM as a function of applied bias Vbias follows

I (Vbias) ∝
1

2
cos (kVbias + φoffset) +

1

2
, (6.1)

where constant k relates the bias voltage to a phase shift of the cosine function

and φoffset determines the working point of the EOM. Consider driving the EOM

with a sine wave of frequency νmod and amplitude A. The intensity modulation

of the laser is then given by

I (t) ∝ 1

2
cos (kA sin (νmodt) + φoffset) +

1

2
(6.2)

Complex intensity patterns can be generated with when the amplitude of the

modulation exceeds the π-Voltage of the modulator: kA > π. The resulting

spectrum is given by the Fourier transform of the first-order correlation function

of the output field of the EOM.

Figure 6.2 presents two examples of coherent control of single photon waveforms

by this technique. The first example of a synthesized laser waveform and the cor-

responding spectrum are displayed in panels a and b, respectively. The temporal

measurement in panel a is performed using a photodiode with 8-GHz bandwidth,

while the spectrum in panel b is measured using the scanning Fabry-Perot inter-

ferometer. The amplitude modulation of the laser in time gives rise to sidebands

in the spectrum at the modulation frequency of 200 MHz. Panels c and d display

another example for encoding the laser field with a more complicated pattern.

The amplitude of the applied modulation is greater than the π-Voltage and in

the resulting spectrum the component at the carrier frequency (zero detuning) is

strongly suppressed.

The single photon QD emission spectra for the two examples are presented in

panels e and f. The 200-MHz spectral spacing and the relative strength of the
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frequency components are dictated by the laser spectrum for each example, in ad-

dition to being weighted by the QD transition linewidth. The radiative linewidth

(250 MHz) is indicated as gray shaded areas in panels e and f for comparison1. In

both cases (Fig. 6.2 e,f), antibunching in the intensity-correlation measurements

is fully sustained. We note that while these examples are based on amplitude

modulation of the laser field, encoding phase to each spectral component is pos-

sible in this scheme.

These measurements demonstrate that, as a consequence of their mutual coher-

ence with the laser field, the single photon waveforms can be synthesized deter-

ministically without post-generation filtering which can lead to photon loss and

degradation of the single photon quality. The accessible bandwidth for waveform

synthesis is restricted only by the mutual coherence for low frequencies, and the

QD transition linewidth for high frequencies.

6.4 Photon indistinguishability

A key requirement of a photonic link in a quantum network is the ability to

create time-synchronised indistinguishable single photons from separate sources.

However, the uncorrelated environment fluctuations experienced by separate QDs

under nonresonant excitation lead to variations in temporal and spectral overlap

of photon wavepackets [161; 172; 173]. Imparting mutual coherence on indepen-

dent photons via a common excitation laser can therefore be a crucial advantage

in achieving indistinguishable wavepackets. Therefore, we perform Hong-Ou-

Mandel style two-photon interference [174] experiments of two QD photons scat-

tered from the same QD at different times to quantify the indistinguishability of

synthesised photon waveforms with complex spectra. We note that in all interef-

erence measurements that follow, the QD fluorescence is spectrally filtered via a

1600 grooves per millimeter grating to remove the phonon sideband.

A schematic of the experimental setup is shown in Fig. 6.3 a. Figure 6.3 b

displays the laser pulse train (top panel) used to generate coherent QD photons

in the Heitler regime (bottom). The laser pulses are derived from a continuous

1We note that the measured QD spectrum is broadened by spectral diffusion beyond the
radiative limit.
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Figure 6.3: Indistinguishability of waveform-synthesised photons. a, Illustration
of the experimental setup for two-photon interference from a single QD. b, Time-
synchronised single QD photons (bottom panel) are generated by exciting the QD
transition with laser pulses of 500-ps width and 300-MHz repetition rate (top panel).
c, The intensity autocorrelation function for QD photons is recorded in a Hanbury-
Brown and Twiss setup. A two-photon probability per pulse below 5% demonstrates
the quantum nature of the emitter. d,e Two-photon interference measurements for
QD photons of orthogonal (d) and parallel (e) polarisation. The bottom panels dis-
play the normalised differences to the intensity autocorrelation in c, respectively. The
lack of two-photon interference for orthogonally polarized photons in d gives rise to
coincidences at zero time delay, yielding a peak in the bottom panel. For photons of
parallel polarisation, the absence of coincidences around zero time delay reflects suc-
cessful two-photon interference in e. The ratio of the areas in the bottom panels yields
a raw visibility of 0.926. Experimental data in ce are shown as continuous dark red
curves, while a simulation for each case based on system parameters is shaded in light
red. The data are recorded in 162-ps time bins with 600-ps timing resolution.
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Figure 6.4: First-order interference in the Hong-Ou-Mandel interferometer. We moni-
tor single photon detection events during the Hong-Ou-Mandel experiment. Top panel:
First-order interference occurs for coherent QD photons as a consequence of varying
phase difference between both interferometer arms. The contrast of first-order interfer-
ence quantifies the fraction of coherently scattered QD emission. Bottom panel: The
time traces of detection events for photons of orthogonal polarisation stay nearly con-
stant, as photons are distinguishable in their polarisation. The QD transition is shifted
out of resonance periodically via DC Stark effect to monitor the background counts.
This is visible as abrupt drops in intensity.

wave laser by modulating the EOM transmission with independent control on

the duration and the repetition rate. Here, the laser pulses are 500-ps long with

a repetition rate of 300 MHz. For these settings the temporal response of the

QD transition is visible as an exponential tail in the coherent conversion of laser

pulses into single photons1. Before we describe the two-photon interference mea-

surements in detail we want to confirm that the the pulsed single photon stream

predominantly consists of coherent scattering.

First-order interference in the Hong-Ou-Mandel interferometer. In ad-

dition to the coincidence events that manifest the two-photon interference we also

record the individual detection events on both avalanche photodiodes (APDs)

(see Fig. 6.3 a). Figure 6.4 presents two 1200-s long measurement of the single-

photon detections of pulsed QD fluorescence on the two APDs. The top panel

1As an aside, it may be interesting to create photons with the Gaussian or double-
exponential waveforms, which can improve the excitation probability [175].
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corresponds to the case where the photons in both interferometer arms have the

same polarisation, while the bottom panel shows a detection time trace for pho-

tons of orthogonal polarisation. In the former case, the single-photon count rate

shows signatures of first-order interference. This is due to the phase fluctuations

between both interferometer arms as the path lengths vary slowly over time due

to mechanical wandering and slight changes in ambient temperature1. This first-

order interference is strongly suppressed, as it should be, for photons of nominally

orthogonal polarisation in the bottom panel. The contrast of first-order interfer-

ence quantifies the fraction of coherently scattered QD emission Fcoh which is

Fcoh ≈ 0.92 for the data in Fig. 6.4.

Two-photon interference Figure 6.3 c shows the measured intensity-correlation

function g(2) (τ) for these photons. The missing peak at zero time delay in co-

incidence detection evidences strong antibunching. For pure photonic states, a

Hong-Ou-Mandel-style two-photon interference measurement in the vicinity of

zero time delay is expected to follow

g
(2)
HOM (τ) =

(
t21 + r2

1

)
g(2) (τ) + 2r1t1

(
1− η + ηg(2) (τ)

)
, (6.3)

where t1 and r1 are the transmission and reflection coefficients of the first beam-

splitter used to form the two input arms of the second beam splitter (cf. Fig. 6.3

a). The variable η quantifies the photon indistinguishability including any imper-

fections of the measurement apparatus. For fully indistinguishable (η = 1) pho-

tons g
(2)
HOM (τ) reduces to g(2) (τ), while for fully distinguishable (η = 1) photons

Eq. (6.3) takes the form g
(2)
HOM (τ) = (t21 + r2

1) g(2) (τ) + 2r1t1. We use the polari-

sation of the input photons as means to vary η , such that parallel (orthogonal)

polarisation leads to a maximum (minimum) value for η. These measurements,

performed in conditions identical to those of Fig. 6.3 c , are shown in panels 6.3

d and 6.3 e for orthogonal and parallel input polarisation states, respectively.

In order to quantify the two-photon interference fidelity we compare the data

1Further, for the purpose of data calibration the QD transition was periodically shifted out
of resonance with respect to the exciting laser, so that the background counts due to detector
dark counts and laser leakage were recorded. This is visible as sharp drops in intensity in the
data
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directly with the ideal case of g
(2)
HOM (τ) = g(2) (τ): the bottom panels of Fig. 6.3

d and e show
g

(2)
HOM (τ)− g(2) (τ)

g(2) (τ)

for their respective interference measurement. Integrating the normalised dif-

ference curves for both polarisation cases over one repetition period (∼ 3.3 ns)

centred around zero time delay, we can extract a raw contrast of the two-photon

interference of CHOM = 1−
(
A‖/A⊥

)
= 0.926± 0.016.

The raw contrast of the two-photon interference constitutes a lower bound to

photon wavepacket indistinguishability, as the measurement is affected by imper-

fections of the setup. In our case these include polarisation degradation in the

single mode fibre beamsplitter and an imbalance of beamsplitter coefficients. The

conventional treatment of these imperfections [159; 176] assumes that the pho-

ton coherence time τc is much shorter than the time delay in the interferometer,

τc � ∆tdelay. The expected interference contrast is then

CHOM = 1−
A‖
A⊥

= 1−
2r2t2p‖ (D − 1) + r2

2 + t22
2r2t2p⊥ (D − 1) + r2

2 + t22
(6.4)

where D is the distinguishability of photon pairs. Experimentally we measure the

fraction A‖/A⊥ then determine 1−D, knowing the values and error estimates for

all parameters involved in Eq. (6.4). For the data in Fig. 6.3 we obtain a cor-

rected contrast of unity within the experimental uncertainty (Ccor = 1.03±0.05).

For coherently scattered photons the correction for the interferometer imperfec-

tions is not straightforward as their coherence time exceeds the interferometer

time delay, therefore we choose to correct only for the polarisation mismatch

which affects coherent and incoherent photons in the same way. The expected

interference contrast then yields

CHOM = 1−
A‖
A⊥

= 1−
1− p‖ +Dp‖
1− p⊥ +Dp⊥

. (6.5)

This lower bound on photon wavepacket indistinguishability evaluates to 0.96±
0.04 and is still higher than all indistinguishabilities reported for non-resonantly

generated QD photons. He et al. obtained similar interference visibilities for
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resonantly generated incoherent photons recently [177]. We stress that the lack

of correlation between the environment dynamics of multiple QDs will inevitably

lead to the degradation of photon indistinguishability for the incoherently gen-

erated photons, while the coherent generation process reported here offers some

protection from such effects.

6.5 Chapter discussion and outlook

We have demonstrated the generation of fundamentally indistinguishable, coher-

ent single photons from a solid-state quantum emitter with a high degree of con-

trol and flexibility in waveform synthesis. These phase-locked photons are ideally

suited for quantum interference applications, which form the basis of quantum

communication [162], linear optics quantum computation [98; 120], and distant

entanglement schemes [156; 157]. The price to pay for this unprecedented pho-

ton quality is excitation efficiency. To obtain a coherent fraction of about 0.9 in

pulsed excitation, photons are probabilistically generated with 5-10% efficiency

(1.5-3 · 107 Hz for the two-photon interference measurements presented here).

While generation rates are lower than those achievable in deterministic excitation

schemes, the trade-off between photon rates and photon quality is well justified

for two main reasons: first, quantum interference applications can work well

with probabilistic gates [157; 178], while the low photon quality reported so far

[161; 173] rules out the use of QD photons in quantum information applications.

Further, non-unity photon collection and detector efficiencies evidently render any

measurement-based schemes probabilistic. Second, an entanglement rate scaling

with the two-photon detection efficiency [157] is replaced advantageously by one-

photon detection [156; 162] utilising the first-order coherence of the coherently

scattered photons.

The technique presented in the work is not limited to QDs and can be extended

to other quantum systems in the optical domain as well as to superconducting

circuits in the microwave domain.

One next immediate step in the direction of a quantum network is to extend the

two-photon interference to two independent quantum dots. We have attempted
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this measurements, in fact before measuring the two-photon interference pre-

sented in this chapter. Raw visibilities in the pulsed experiment around 40%

were obtained, however, without filtering the phonon sideband and limited po-

larisation control. The main reason the experiment was not pursued further was

that the second QD sample showed strong spectral diffusion and blinking (due to

the high QD density). Correcting for the experimental imperfections gave a lower

bound on photon indistinguishability of > 70%, but was not reported due to the

experimental imperfections. We note that Konthasinghe et al. have reported on

continuous-wave two-photon interference from two independent QDs under res-

onant excitation recently [179]. In the presence of strong spectral diffusion they

obtain a two-photon visibility around 40%.
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Chapter 7

Single-shot readout of the

electron spin

In this chapter we discuss the dynamics of few spins confined to a pair of vertically

stacked QDs. The electronic levels of the two QDs can be tuned into resonance

so that tunnel coupling leads to the development of molecular states. We demon-

strate how transitions into these molecular states can be used to monitor the spin

projection of a single electron confined to one of the QDs. This chapter is based

on [111].

In the first part of this chapter we explain how spectroscopy of QD molecules

(QDMs) can be linked to electron tunnel coupling in various spin and charge

configurations. In this context the detailed energy level structure for the case

of a single electron confined to one QD and a neutral exciton transition in the

other QD is derived and compared to measurements. The concept of spin readout

by recycling a molecular transition is picked up: We investigate if there are any

obvious shortcomings to using the transition to the molecular T+1/2 state as read-

out channel. In the second part time-averaged and time-resolved measurements

demonstrate the conditionality of the molecular transitions on the single electron

spin state and we show that spin dynamics can be monitored in real-time. The

fidelity of the spin readout is discussed.

Despite being the last experimental chapter of this thesis, the work was actually

done first (2009-2010). As such, both the photon collection efficiency and the
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suppression of laser background for resonance fluorescence for the measurements

presented here are somewhat worse than the performance described in earlier

chapters. In the final part of this chapter we extrapolate from the measured spin

readout fidelities to fidelities potentially afforded by the improved collection effi-

ciency and background suppression. I also note that measurements were devised,

performed and analysed in a strong collaboration with Chao-Yang Lu and Dr

Nick Vamivakas who share equal credit for the results. I also acknowledge the

contribution of Yong Zhao whose calculations on QDM energy level served as a

model for those I present in this chapter. Antonio Badolato and Stefan Fält grew

the sample.

7.1 Why quantum dot molecules?

We may remember from the QD level structure discussion and the summary on

coherent QD spin control schemes in Chapter 1 that spin state readout is a bot-

tleneck for single spin qubits in optically active QDs: Fast optical initialisation

and manipulation on the one hand and reliable readout on the other hand cannot

be realised at the same time in this system. Our approach is to decouple the

two parts using a tunnel-coupled quantum dot molecule. With a single electron

resident in one QD of the pair while the other QD is empty we expect optical

transitions into four different molecular states (see Fig. 7.1) when an exciton

is added in the empty QD. The nomenclature for ground and excited states is

explained in the figure caption. Transitions of the single electron charged QD,

denoted ‘host’ QD, can be used for state initialisation via optical pumping as

discussed before, whereas the transitions to molecular states via the second QD,

denoted ‘readout’ QD, are reserved for readout. Under magnetic field the four

molecular transitions are separated in energy, and backaction effects on the host

electron spin should be strongly reduced compared to the single QD case. Previ-

ous research by Kim et al. [180] has shown in time-averaged measurements that

the transition to the T+1/2 state is robust against spin pumping and conditional

on the host spin state.

Our aim is to perform real-time spin readout by observing intermittent resonance

fluorescence from the 1→ T+1/2 transition. For ions, intermittent resonance fluo-
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Figure 7.1: Cartoon of the ground and excited states of the QDM. The
left (right) half of each square shows charges in the host (readout) QD where top (bot-
tom) squares contain electrons (holes). Double-ended arrows denote optical transitions,
single-ended arrows show weak decay channels. The single electron ground states are
labeled 0 and 1, the ‘atomic’ trion states in the host QD are S+3/2, S−3/2 (electrons
in singlet state) and the molecular states are denoted Tx. Subscripts give the total
angular momentum in each case.

rescence has revealed quantum jumps back in 1986 already [181; 182; 183] and it

was later observed for other systems [184]. The 1→ T+1/2 transition is expected

to be a robust recycling transition and the suitability of this transition as readout

channel for the host electron spin will be investigated.

7.2 Quantum dot molecule sample

The sample is a Schottky diode heterostructure (see Fig. 7.2) with two InAs

QD layers separated by 13 nm (separation of bottom of the first wetting layer

to bottom of the second wetting layer). The distance to the ohmic contact is 30

nm, and the length between the ohmic and Schottky gate is 200 nm. Growth

conditions are such that the energy levels in the readout QD (marked red in the

sketch) are redshifted in comparison to levels in the host QD (blue). Electron
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Figure 7.2: Dimensions of the sample.

tunneling in the configuration of a single electron in the host QD and an exciton

in the readout QD is possible by tuning the gate voltage. Hole energy levels in

the two QDs are far detuned so that hole tunneling does not occur.

7.3 Quantum dot molecules

Tunnel-coupling between QDs shows characteristic signatures in photolumines-

cence spectra, most prominently avoided crossings, or anticrossings [185]. These

avoided crossings are a result of hybridisation of the two energy levels that are

brought into resonance. Detailed (magneto-)photoluminescence studies have been

published, identifying which charge and pin configurations in the QDM are in-

volved in tunneling at each of the observed anticrossings [27; 185; 186; 187].

Fig. 7.3 shows a PL-gate voltage map of the host (a) and the readout QD

(b). The magnitude of the anticrossings give information about the strength of

the tunnel coupling for the charge states involved. While we extract values for

exchange splittings and tunnel coupling from these PL maps we rely on the reso-

nant high-resolution differential transmission (DT) to identify optical transitions

and their respective ground states unambiguously.

Before moving on to the DT measurements and theoretical modelling we briefly

discuss the simplest case that can give rise to an anticrossing, a single electron
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Figure 7.3: PL map of the the host QD (a) and readout QD (b). Neutral exciton and
trion emission lines have been indicated.

in the QDM, to obtain some intuition for the more complex cases. We define

the basis states of the system as the electron being in the host QD (|1〉) and the

electron being in the readout QD (|2〉):

|1〉 = e†host |0〉

|2〉 = e†readout |0〉 ,

where e†QD is the fermionic creation operator for an electron in the QD defined

in the subscript and |0〉 denotes the vacuum state. The energy levels for the

two states can be tuned into resonance by changing the gate voltage. We relate

the energy difference δE between the two levels to the gate voltage and sample

dimensions:

δE =
e (V0 − Vg)

L
d+ δE0, (7.1)

where V0 is the offset of the conduction band edge and the Schottky contact at

zero bias, L is the distance between the gates, d is the distance of charges in the

host QD to charges in the readout QD (cf. Fig. 7.2). δE0 provides a constant

offset. We designate state |1〉 to be the energy reference: as we are only interested

in the relative energies we subtract the single particle energy and only state |2〉
depends linearly on the applied gate voltage. The matrix tunneling element
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Figure 7.4: Energy levels for a single electron in a tunnel-coupled QDM.

is given by te = 〈φhost|h|φreadout〉, where φhost and φreadout are the orthonormal

wavefunctions of the electron in state |1〉 and |2〉, respectively, and h is the single-

particle Hamiltonian. The Hamiltonian for the coupled system is then

H1e =

(
0 te

te δE

)
. (7.2)

Solving for the eigenvalues we obtain energies E1,2

E1,2 =
δE

2
± 1

2

√
δE2 + 4t2e (7.3)

The energies (7.3) are plotted in Fig.7.4 The anticrossing is 2te in magnitude.

7.4 Quantum dot molecule spectroscopy

We are interested in the gate voltage regime where the QDM ground state is given

by a single electron in the host QD, and the QDM excited state has an exciton

added in the readout QD.

Here, we present a calculation of the QDM’s electronic states and optical tran-
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sition energies relevant for our readout scheme. We compute the dependence of

the energies on gate voltage and external magnetic field and compare the simu-

lation to our measured DT maps. In the model we choose basis states that are

eigenstates in the limit of weak electron-hole exchange and no tunnel coupling

between the host and readout QD. As we will see later this choice of basis comes

rather close to the actual set of eigenstates under high magnetic fields. The nu-

merical model allows us to make a statement about the ‘purity’ of the readout

state T+1/2, and hence possible errors in the readout scheme. The effects of state

mixing, e.g. due to heavy-light hole mixing, can be discussed in this context as

well.

The QDM ground state consists of a single electron in the host QD whereas

the excited states consist of two electrons and one hole within the two QDs. In

the excited state the two electrons occupy the lowest orbital levels and can both

reside in the same QD or one electron can be in each dot. For our model (and

sample) the heavy hole is localized in the readout QD. From the DT spectroscopy

(see Fig. 7.5) it is obvious that tunnel coupling takes place in the excited states,

so we consider the following 12 excited states of two electrons and one hole:

|1〉 = e†host↑e
†
host↓h

†
readout⇑ |0〉 |7〉 = e†host↑e

†
host↓h

†
readout⇓ |0〉

|2〉 = e†readout↑e
†
readout↓h

†
readout⇑ |0〉 |8〉 = e†readout↑e

†
readout↓h

†
readout⇓ |0〉

|3〉 = e†host↑e
†
readout↓h

†
readout⇑ |0〉 |9〉 = e†host↑e

†
readout↓h

†
readout⇓ |0〉

|4〉 = e†host↓e
†
readout↑h

†
readout⇑ |0〉 |10〉 = e†host↓e

†
readout↑h

†
readout⇓ |0〉

|5〉 = e†host↑e
†
readout↑h

†
readout⇓ |0〉 |11〉 = e†host↑e

†
readout↑h

†
readout⇑ |0〉

|6〉 = e†host↓e
†
readout↓h

†
readout⇓ |0〉 |12〉 = e†host↓e

†
readout↓h

†
readout⇑ |0〉

Here (e, h)†dot,σz
is the fermionic creation operator for an electron (e) or a hole (h)

in host or readout dot, with spin projection σz. States |1〉, |2〉, |7〉, |8〉 are the

only configurations with two electrons in the same dot. The electrons are in a

spin-singlet state in these cases; triplet states are far removed in energy and do

not take part in any interactions. The states |4〉, |6〉, |9〉, |11〉 are ‘dark’, whereas

the states |3〉, |5〉, |10〉, |12〉 are ‘bright’.

The Hamiltonian we consider is:
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H = Hparticle +HCoulomb +Hexchange +Htunnel (7.4)

For the purpose of a numerical solution we note

1. Hparticle is the sum of single particle energies. The absolute energies of

two electrons and one hole in the potential of the quantum dot molecule in

different spin configurations are very similar, so we choose the configuration

with all charges in the readout dot (states |2〉 and |8〉) as reference energy

and calculate energies relative to the reference. This reference is set in the

absence of Coulomb and exchange interactions and does not change with

applied gate voltage.

2. The Coulomb terms for two particles a and b are defined as before (Eq.

(1.1)). We reduce the Coulomb interactions to four terms. The subscripts

denote which charges are considered and if the interaction is direct (both

particles in the same dot) or indirect (in separate dots). Values can be

estimated from photoluminescence (PL) maps and found in the literature

[185; 187; 188; 189]:

Vee,direct ≈ 20meV

Vee,indirect ≈ 10meV

Veh,direct ≈ −24meV

Veh,indirect ≈ −10meV

3. Exchange interaction is defined in Eq. (1.3). Two of the three terms

for electron-hole exchange can be deduced from spectroscopic data. The

isotropic exchange splitting between dark and bright excitons can be ex-

tracted from the PL map in Fig. 7.3 to be δ0 ≈ 220 µeV. The anisotropic

exchange δ1 can be measured from the DT spectrum in Fig. 7.5a when the

host QD is charged with two electrons and hence in a spin singlet configu-

146



ration. Then the host QD spins do not take part in exchange interactions

and we measure δ1 ≈ 17.6 µeV. The dark exciton splitting δ2 is not visible

in photoluminescence measurements, but expected to be of the same order

as δ1. The interdot electron-electron exchange Jee is very small, from [185]

we estimate it to be ∼ 1 µeV. It couples states |3〉 to |4〉 and |9〉 to |10〉.

4. Tunnel coupling takes place between states |1〉, |2〉 and |3〉, |4〉 and between

|7〉, |8〉 and |9〉, |10〉. The magnitude can be extracted from the PL maps

and is te ≈ 330 µeV for this QDM.

Lastly, changing the gate voltage shifts the detuning δE between electron

energy levels in the host dot and readout dot, enabling electron tunneling.

Expressing the Hamiltonian of Eq. (7.4) in the basis |1〉-|12〉 block diago-

nalizes the Hamiltonian into 2 blocks. One block couples states |1〉-|6〉 and

the other couples states |7〉-|12〉 1. Eq. (7.5) is the Hamiltonian matrix for

states |1〉-|6〉 (the block for states |7〉-|12〉 is essentially the same).

H|1〉−|6〉 =

−2δE + V1 0 te −te 0 0

0 V2 te −te 0 0

te te −δE + V3 + δ0 Jee δ1 0

−te −te Jee −δE + V4 − δ0 0 δ2

0 0 δ1 0 −δE + V5 + δ0 0

0 0 0 δ2 0 −δE + V6 − δ0


(7.5)

Due to space constraints placeholders were used instead of the full Coulomb

1D. Kim et al. [180] observe another anticrossing in the excited state level structure where
coupling between states |5〉 and |9〉 occurs. We see the same effect in other dot pairs, but
for this particular one it happens at magnetic fields outside the range of data presented. A
phenomenological term (2 µeV) has been included in the final Hamiltonian.
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matrix elements:

V1 = 2Veh,indirect + Vee,direct

V2 = 1Vee,direct + 2Veh,direct

V3 = Veh,direct + Veh,indirect + Vee,indirect

V4 = Veh,indirect + Veh,direct + Vee,indirect

V5 = Veh,direct + Veh,indirect + Vee,indirect

V6 = Veh,direct + Veh,indirect + Vee,indirect

Diagonalising the Hamiltonian we determine both the eigenenergies and eigen-

states as a function of gate voltage and magnetic field which we then compare

with the measured data.

Fig. 7.5 presents differential transmission (DT) spectra of the host and readout

QD optical transitions as a function of gate voltage at zero external magnetic

field. The top panel displays the trion transition of the host QD where the labels

0e/1e/2e denote the ground state charge configurations and the vertical dashed

lines indicate the 1-electron ground state range. The bottom panel gives the

transition map for the readout QD in the same gate voltage range. Throughout

the relevant gate voltage range the readout QD remains uncharged. The voltage

dependence of the splitting between the two optical transitions indicates tunnel

coupling between host and readout QD. Signs of the avoided crossing are only

visible in the readout QD spectrum, so the tunnel coupling takes place between

the exciton electron and the host dot electron, as assumed in the calculation. In

Fig. 7.5 b we present the calculated level structure by diagonalising Eq. (7.5)

near the anticrossing. The linear Stark shift common to all lines in the measured

spectrum has been neglected in the simulation. The five lines show the evolu-

tion of the doubly degenerate eigenenergies with applied gate voltage (the two

eigenenergies not shown in Fig. 7.5 b are higher in energy and take no part in the

interactions in this gate voltage range). We can relate the transitions observed

experimentally (Fig. 7.5 a) to the green and blue lines in the simulation. We
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Figure 7.5: Transmission spectroscopy on the quantum dot molecule and
calculated level structure. a, Transmission spectra for the QDM at zero magnetic
field. The laser frequency is scanned for fixed gate voltages. The top panel shows the
transmission spectrum for the host QD trion transition. The 0e/1e/2e labels denote the
ground state charge configuration of the host. The bottom panel shows the transmission
spectrum of the readout QD transitions. In the gate voltage range bounded by the
vertical white lines the readout QD ground state is uncharged. b, top panel Calculated
level structure for the QDM at zero magnetic field around the avoided crossing. The red
lines correspond to the singlet-like spin configuration and anticross. The blue doublet
passes through the avoided crossing unaffected and can be associated with the bright
basis states with parallel electron spins (T±-like), while the dashed grey line originates
from the parallel electron spin dark states. The green line goes from dark to bright
as it wiggles through the avoided crossing. It consists of basis states with antiparallel
electron spins and has T0-character. b, bottom panel Comparison of data from a
to the simulation. The arrow indicates the gate voltage region where time-resolved
measurements are performed later.
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subtract the Stark shift from the data and compare simulation and experiment

directly (Fig. 7.5 c). None of the other transitions show up in the spectrum as

they are far detuned (red lines) and/or optically dark (grey lines).

A closer look at the evolution of the eigenvector reveals how we can understand

the effect of tunnel coupling between two electrons in the presence of a hole. Go-

ing back to Fig. 7.5 b, the red line is the only one to show an anticrossing, which

would be expected from a singlet state for a 2-electron system. The eigenvector at

the lower gate voltage end is composed mostly of basis states |3〉 and |10〉, which

are antiparallel spin combinations of one electron in each dot with opposite hole

spins. Moving closer to the anticrossing the basis states with both electrons in

the host dot (|1〉 and |7〉) are gaining importance. At the anticrossing the states

|1〉,|7〉 and |3〉,|10〉 are roughly of equal strength and weakly admixed with the

dark states |4〉 and |9〉. At even higher gate voltages (cut off in the figure) basis

states |1〉 and |7〉 dominate. The lower red line shows reverse character. We

associate this behaviour with a molecular singlet state modified by electron-hole

exchange. Next, the blue line shows almost no dependence on gate voltage as

it moves through the anticrossing, characteristic of a molecular triplet state. Its

eigenvector is a combination of initially all bright basis states (|3〉,|5〉,|10〉,|12〉).
|5〉 and |12〉 contribute the most, and around the anticrossing the eigenvector is

almost entirely made up of the parallel electron spin combinations |5〉 and |12〉.
The green line starts off as an admixture of all dark basis states (|4〉,|6〉,|9〉,|11〉).
As it wiggles through the anticrossing region its composition changes to include

the bright antiparallel spin basis states (|3〉,|10〉) at the expense of the dark par-

allel spin ones (|6〉,|11〉). On the higher gate voltage side of the avoided crossing

the bright states |3〉,|10〉 dominate, reminiscent of a T0 triplet in the 2-electron

case. The lower grey dashed lines are very similar in nature to the green line

at low gate voltages: they are combinations of all dark states. For gate voltages

above the avoided crossing only the contributions from the dark parallel spin

states (|6〉,|11〉) remain. In the comparison to the two-electron case the green

and grey lines represent T± states and do not take part in the tunnel coupling.

We move on to discuss the magnetic field dependence in Faraday geometry of

the bright QDM transitions relevant for the readout scheme (green and blue line
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Figure 7.6: Energy levels and QDM optical transitions as a function of
magnetic field. a, Evolution of eigenenergies with magnetic field at the gate voltage
marked by the arrow in Fig. 7.5 c. The degeneracy of different angular momentum
states is lifted for all lines. From top to bottom we have the bright molecular triplet-like
states, the dark (optically forbidden) triplets and the molecular singlet-like ones. The
black pair at the bottom shows the splitting of the single electron ground state. b, The
transition energies are obtained by subtracting the respective ground state energies
from each excited state. c, DT spectra for the readout QD transitions as a function of
magnetic field in the Faraday configuration. The first avoided crossing between T+3/2

and T−1/2 states occurs at 2 T as indicated by the red rectangle. At larger magnetic
fields the two highest frequency transitions are T+3/2 and T+1/2, respectively.
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in Fig. 7.6b and 7.6c). Figure 7.6 presents simulation (Fig. 7.6a and 7.6b) and

experiment (7.6c) for DT spectra as a function of magnetic field. In the simu-

lation we only consider Zeeman shifts, neglecting the diamagnetic shift which is

also present in the data and common to all transitions. Figure 7.6a shows the

QDM eigenenergy evolution as a function of magnetic field. Electron and hole

g-factors are found from the data in Fig. 7.6c. The top 4 lines correspond to

the 4 bright triplet-like eigenstates and at the bottom of the figure the single

electron ground states are shown in black. For convenience we label these four

eigenstates according to the basis state that contributes most in each case. This

is the notation used when we introduced the readout scheme in section 7.1. At

low magnetic fields going from higher to lower energies we have the T+1/2 state

(corresponding basis state |12〉 in Eq. (7.4)), the T−1/2 state (basis state |5〉) and

then the T+3/2 (basis state |3〉) and T−3/2 states (basis state |10〉). Around 2 T

magnetic field the T+3/2 state and the T−1/2 state anticross so that the T+3/2

state is second highest in energy for higher magnetic fields. Fig. 7.6b displays

the transition energies expected from the energy level scheme in Fig. 7.6a using

these labels. The experimental raw data is given in Fig. 7.6c.

In order for our readout to work efficiently we need the T+1/2 readout state to

have as little admixture of basis states other than |12〉 as possible. We use the

numerical model to evaluate the composition of the T+1/2 state in terms of the

basis states at 2.3 T, the magnetic field value which is later used for readout.

The four biggest contributions to the eigenvector are:

T+1/2 (B = 2.3T) =
√

0.9813 |12〉+
√

0.0181 |10〉+
√

3.3 · 10−4 |9〉+
√

4 · 10−5 |5〉 .

All remaining contributions are ≤
√

10−5. The admixture of |10〉 means that the

polarisation of emitted photons is slightly elliptical, but it does not introduce

errors in the readout, as the host spin state is 1. Reduced readout fidelities are

caused by admixtures of the basis states with host spin 0: |9〉 and |5〉. Con-

sidering that radiative recombination of |9〉 is dipole-forbidden the admixture of

|5〉 is expected to be the dominant contribution to readout error. In this case,

measurement of a photon from the T+1/2 excitation has a fidelity error of < 10−4.

This is expected to be much smaller than other experimental errors. As such we
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consider the T+1/2 state to be satisfactorily ‘pure’ for the purpose of spin readout.

Having discussed the purity of the readout state, we briefly turn to the other tran-

sitions. Due to the anticrossing at 2 T the intermediate transitions are roughly

equal superpositions of basis states |3〉 and |5〉 at 2.3 T. A second anticrossing is

expected at higher fields between the two lower energy levels (pair of green lines

in Fig. 7.6 a) [180]. This anticrossing mixes basis states of different host spin

orientations. The optical transition to the T+1/2 state remains the only transition

that does not hybridise with the other transitions.

The analysis confirms that the 1 → T+1/2 transition is suitable as a recycling

transition to deduce the host QD spin state.

7.5 Steady-state spin dynamics

In order to show that there is a direct link between the transitions to specific

molecular states and the host spin orientation we perform time-averaged two-

colour resonance fluorescence measurements. The host spin is deterministically

set to either 0 or 1 by continuous optical pumping [48] and we monitor resonance

fluorescence counts while driving the 1 → T+1/2 transition. Unless specified

otherwise, all following experiments are performed at 2.3 T and the laser is linearly

polarised. A 1 nm bandwidth filter is used to reduce laser leakage from the

pumping laser.

In the left panel of Fig. 7.7a the pumping laser is scanned across the 0→ S+3/2

transition (detuning δpump) while the readout laser is fixed and detuned from

the 1→ T+1/2 transition by δreadout (see sketch at the bottom of Fig. 7.7 for the

transitions involved). For finite pump detuning δpump, i.e. inefficient pumping into

the 1 state, we observe a constant resonance fluorescence signal when the readout

laser is resonant with the 1 → T+1/2 transition. In the double resonance case

spin pumping into state 1 is efficient and the resonance fluorescence signal from

the readout transition is enhanced. In the right panel of Fig. 7.7a the pumping

laser initialises state 0 continuously when its detuning δp from the 1 → S−3/2

transition is small. Here the resonance fluorescence signal is suppressed in the

double resonance case.
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Figure 7.7: Steady-state spin dynamics monitored via molecular transitions.
Sketches at the bottom of the figure indicate which transitions are being driven. The
red (blue) arrow denoted the readout (pump) laser.
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A third test of the conditionality of the molecular transitions on the host spin

state is shown in Fig. 7.7b. The pumping laser is set to initialise the host spin in

state 0. The right part of Fig. 7.7 b is identical in conditions to the right panel

of a, but as the readout laser is red detuned further, it hits resonance with the

molecular transitions 0→ T+3/2 first and then 0→ T−1/2. These transitions light

up as the host spin is pumped into the 0 state, consistent with the reduction of

signal in the 1→ T+1/2 channel.

Another interesting feature is observed in Fig. 7.7 b: when the pumping laser

is off-resonant, i.e. not preparing the host spin state, no resonance fluorescence

signal is visible from the 0 → T+3/2,T−1/2 transitions, while the 1 → T+1/2 is

continuously very bright. This points to a spin pumping process where the host

spin state is flipped by driving the molecular 0→ T+3/2,T−1/2 transitions.

7.6 Time-resolved spin dynamics

Having confirmed the purity of the T+1/2 readout state in simulations and veri-

fying that

1. resonance fluorescence from the readout transition shows conditionality on

the host spin state and

2. it does not exhibit optical spin pumping unlike the two spectrally closest

transitions,

we move on to real-time resonance fluorescence monitoring from the readout tran-

sition. Host spin dynamics are expected to be reflected in intermittent resonance

fluorescence.

Fig. 7.8a shows a 300-ms long time trace of the resonance fluorescence (2 ms

time bins) when the readout laser is driving the 1→ T+1/2 transition below sat-

uration. Clear jumps in the fluorescence between two levels are observed. We

denote the bright fluorescence level as ‘on’ and the dark levels as ‘off’. The his-

togram for the frequency of fluorescence counts per time bin for 1200 seconds of

data is displayed in Fig. 7.8b. It shows two modes which we associate with ‘on’

and ‘off’. In 7.8c the frequency histogram for ‘off’ durations, i.e. the duration
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Figure 7.8: Time-resolved resonance fluorescence from the readout transi-
tion. a 300 ms of intermittent resonance fluorescence. b, Histogram of photocounts.
The distribution is considerably broader than would be expected from a, this is due to
spectral diffusion during the 1200 seconds of recording data. c, Statistics ‘on’ the off
durations reveal single exponential decay.

of a dark period, is plotted. It follows a single exponential decay with a decay

constant Toff=14.9 ms.

Next, we monitor resonance fluorescence while pumping the host spin into state

1 or 0, in analogy to the time-averaged measurements. Fig. 7.9a shows counts

in 250 µs time bins, where for negative times the readout laser only is active.

The time trace exhibits switching between on and off levels as before. At positive

times a pumping laser resonant with the 1 → S−3/2 transition forces the host

spin into state 0 and the readout fluorescence is quenched. In the top right panel

of Fig. 7.9b we show a histogram of fluorescence counts when only the readout

laser is driving the 1 → T+1/2 transition on resonance (time bin of 4 ms). The

left panel shows a zoom-in of the lower tail of the histogram, which is due to ‘off’

periods in the fluorescence stream. The same arrangement of plots is used in the

bottom panel of b where a weak pumping laser drives the 0 → S+3/2 transition.

Counts in the lower histogram tail are reduced by a factor of 3.

These time-resolved measurements demonstrate the same conditionality of flu-

orescence on the host electron spin as the time-averaged measurements: Dark

periods in the photonstream can be associated with spin state 0 and bright peri-

ods with spin state 1.
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Figure 7.9: Time-resolved resonance fluorescence from two-colour experi-
ments. a, Quenching of fluoresence when the pumping laser initialises the spin state
to 0 at positive times. b, Comparison of count histograms when only the readout laser
is active (top panels) to simultaneously pumping into spin state 1. The left panels show
the lower tails of the full histograms in more detail.
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7.6.1 State mixing and spin pumping in quantum dot

molecules

Before quantifying the fidelity of the readout technique we need to discuss a

puzzling feature of the resonance fluorescence counts histograms: In Fig. 7.8b,

and even more obviously in Fig. 7.9 b the modes corresponding to ‘on’ and

‘off’ are highly imbalanced. For thermal equilibrium we expect the population

of the Zeeman sublevels to obey Boltzmann statistics. In our case this corre-

sponds very closely to a balanced distribution, so that the histogram areas for

‘on’ and ‘off’ should be equal. We associate the imbalance of populations with

the optical pumping observed in Fig. 7.7 b when the host spin state is 0. We

expect that measurement-induced spin flips originate from these transition be-

ing driven nonresonantly when the 1 → T+1/2 transition is probed on resonance

by the readout laser. In order to quantify the optical spin pumping we use a

previously reported protocol [26] to measure the spin pumping rate directly for

the transition spectrally closest to the readout transition. Fig. 7.10 a explains

the protocol in a sketch. Panel b exhibits the timescale for optical pumping as a

function of spectral detuning. The shortest resonance fluorescence decay constant

is (0.324±0.020) µs obtained on resonance when the transition is driven strongly

into saturation.

At the magnetic field used throughout these measurements (2.3 T) the main mech-

anism relaxing the optical selection rules for single QDs is the heavy-light hole

mixing, and the induced spin-flip rate was shown to be independent of the exter-

nal magnetic field (beyond 1T) [26]. For QDMs the hole-mixing induced spin-flip

rate can be further enhanced by a lateral offset between the two QDs [187]. We

define an admixed heavy-hole state ⇑̃ =⇑ (+3/2) + ε+ ⇑ (+1/2) + ε− ⇑ (−1/2).

Optical spin pumping can be mediated through the following mechanism then(
↑ 0

0 0

)
~ω→

(
↑ ↓
0 ⇑̃

)
te→

(
↑↓ 0

0 ⇑̃

)
te→

(
↓ ↑
0 ⇑̃

)
~ω→

(
↓ 0

0 0

)
,

where we have used the illustration of QDM states from Fig. 7.1 . We expect

to observe efficient spin pumping from transitions that have contributions from
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Figure 7.10: Measurement of optically induced spin-flip transition timescale
from the 0 → T+3/2 transition. Left panel, Protocol for spin pumping measure-
ments. The 0→ T+3/2 transition is driven when the AOM is on. The gate voltage is set
to recycle the host QD electron at the beginning of each cycle. The APD ‘on’ window
moves in consecutive cycles across the region shaded in red. The Zeeman sublevels of
the host QD electron relative to the Fermi level and their occupation at several stages
of the pulse sequence are indicated schematically below. For spin relaxation processes
much slower then spin pumping times, T1 � Tsp, and tcycle ≥ Tsp, an electron initially
in the 1 state will stay in the 1 state until it is recycled. Right panel, laser detuning
dependence of the time-resolved RF at 2.3 T magnetic field obtained for strong excita-
tion laser power. The shortest exponential decay constant occurs on resonance (0.324
± 0.020 µs) and is prolonged for finite detunings.
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Figure 7.11: Statistics on off durations for different laser powers. a, Fre-
quency of off duration for laser power Ω ∼ 0.45T−1

1 (s = 0.4), light grey (Ω ∼
0.23T−1

1 (s = 0.1), dark grey) yields a decay constant Toff =6.5 ms (Toff =14.9 ms).
b, Toff as a function of laser power.

the antiparallel electron spin basis states |3〉 and |10〉 (specifically the the 0 →
T+3/2 and 1 → T−3/2 transitions). At 2.3 T both the 0 → T+3/2 and 0 →
T−1/2 transitions are admixtures containing basis state |3〉, consistent with the

observation of optical spin pumping.

From the optical pumping rate obtained on resonance we can estimate that the

readout laser, detuned from the 0→ T+3/2 transition by 2π×8 GHz, causes spin

flips in a few to tens of ms when the host electron is in state 0, depending on

its driving power. In order to provide evidence for this off-resonant pumping we

vary the readout laser power and compare the duration of dark periods. Fig.

7.11a shows two ‘off’ duration histograms for laser powers of s = 0.4(light grey)

and s = 0.1 (dark grey), giving decay constants Toff of 6.5 ms and 14.9 ms,

respectively. In Fig. 7.11b we plot the extracted Toff values for a range of laser

powers. The expected dependence of Toff on laser and external parameters is

1

Toff

=
1

T0→1

+
γsfΩ

2

4∆2 + T−2
1 + 2Ω2

, (7.6)

where Ω, T1, ∆, γsf and T0→1 denote the Rabi frequency, excited state lifetime,

spectral detuning between the readout laser and the 0 → T+3/2 transition, rate

of optically induced spin flips from state 0 to 1 and the natural spin relaxation

time from state 0 to 1. We set ∆ = 2π×8 GHz, 1/T1 = 2π×250 MHz and
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γsf = 2π × 0.49 MHz from our measurements. The solid black line is obtained

for T0→1 =140 ms, while the lower and upper boundaries of the region shaded in

grey are for T0→1 =50 ms and T0→1 =1 s, respectively.

7.7 Spin readout fidelity

The fact that we can observe abrupt jumps in the fluorescence level, corresponding

to spin flips of the host electron, means that we can determine the spin state for

each measurement time bin. We can think of a time trace of the readout transition

fluorescence as a continuous stream of single-shot readout attempts.

In order to estimate the fidelity of our readout technique we analyse a set of

continuous wave (cw) photodetection time traces, like the one shown in Fig. 7.8

a. We consider each time bin of the time trace to be a single-shot readout attempt.

Every time bin below a set threshold is labeled as ‘off’, and we assign spin state

0 to the host QD electron, and vice versa for time bins above the threshold. The

fidelity is evaluated as 1 − p1e1 − p0e0, where p1 and p0 are the probabilities of

finding the electron in state 1 or 0, and e1 and e0 are the errors in assigning state

1 and 0. A readout error is made when the fluoresence count of a time bin is

above (below) the threshold, but the electron spin was actually in state 0 (1) at

the start of the measurement.

We identify two sources of error when deciding if a particular time bin is ‘on’

or ‘off’. The first one (en
0/e

n
1) is due to photon shot noise: as the photons obey

Poisson statistics we observe a spread of photocounts per time bin. We can

associate one distribution with each of the two host electron spin states. The

distribution for state 0 is given by the shot noise of the laser leakage through the

crossed polarisers, while the distribution for state 1 is given by both the laser

leakage and the shot noise of photodetection from cycling the readout transition

1→ T+1/2. Both distributions can be obtained individually from the time traces.

The fraction of each distribution on the other (wrong) side of the threshold value

constitutes the error en
0/e

n
1 in each case. There is one more step involved in

obtaining the error value. When operating in cw mode, the spin flips due to

off-resonant pumping of the 0→ T+3/2 transition skew the histogram in favour of

the 1 state. The imbalance of state 0 and 1 populations is a consequence of the
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cw readout, so we rescale the distributions obtained for states 0 and 1 to equal

areas, corresponding to the case of equal populations, i.e. no spin information

prior to a single measurement attempt: p1 = p0 = 0.5. For the data in Fig. 7.8

the overlap is below 0.1%. The best threshold value is the one that minimises

the overlap of the rescaled distributions in this case.

The second, more severe source of error (ed
0/e

d
1) is spin flips during the course of a

time bin/readout attempt. We note that a spin flip during the measurement does

not necessarily lead to a readout error: spin flips that happen towards the end of

a time bin do not affect the correct measurement outcome, since the photocounts

remain on the correct side of the threshold. Spin flips early in the time bin,

however, do result in erroneous assignment of the spin state. Where exactly we

cross the line from correct to incorrect readout depends on where the threshold

value between ‘on’ and ‘off’ is. For a threshold that is approximately centred

between the ‘on’ and ‘off’ distributions we can say that only spin flips during the

first half of the time bin lead to wrong readout. The spin flip time from 0 to 1

(Toff) has been measured for various laser powers and is presented in Fig. 7.11.

For the data set of Fig. 7.8 this value is Toff=14.9 ms and the time bin is 2 ms.

From this, the probability of a spin flip in the first half of the time bin, i.e. in

1 ms is ≈ 1/14.9 ≈ 0.07. For spin flips from 1 to 0 we assume a timescale of ∼
100 ms which is a conservative estimate of the natural T1-time from Fig. 7.11b.

The chance of a spin flip in 1 ms is then ≈ 1/100 = 0.01. Summing up the errors

yields a fidelity of

1− p0e0 − p1e1 = 1− 0.5(0.07 + 0.01 + O(10−3)) = 0.96.

The magnitude of the ed
0/e

d
1 error is determined by the length of the time bin

compared to the spin-flip timescale: longer time bins increase the signal-to-noise

ratio as they separate the shot noise distributions for states 0 and 1 and hence

reduce the en
0/e

n
1 error. At the same time longer time bins increase the chance that

a spin flips during a readout attempt. We analyse the fidelity of the high laser

power data set (Ω ∼ 0.49T−1
1 in Fig. 7.11b). The time bin for this measurement

is 300 µs, while Toff has been determined as 5.2 ms, so that the ed
0 error is reduced

(≈ 0.15/5.2 ≈ 0.03). This is at the expense of the ed
0/e

d
1 error, which is of similar
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magnitude. We sum the errors and obtain

1− p0e0 − p1e1 = 1− 0.5(0.03 + 0.002 + 0.035 + 0.055) = 0.94

in this case. We conduct a systematic analysis of error dependencies on integra-

tion times and driving powers in the next section.

7.8 Improving readout fidelities

Compared to the QDM sample used for spin readout, the devices based on the

‘Chef 2’ wafer used in the earlier chapters represent an improvement of factor ∼
4 in photon extraction and the background suppression is improved by a factor of

∼ 20. With these parameters we can project what readout fidelities are possible

with a QD molecule sample with optimised structure and a DBR layer.

We quickly summarise the strategy for spin readout and an optimisation of the

readout fidelity first: State-readout using resonance fluorescence is achieved by

probing a spin-selective transition for a set duration and comparing the number

of photodetection events to a suitably chosen threshold. Essentially, distinguish-

ing two spin state translates to telling if a particular transition is active/on or

off: If the number of photodetection events is above the threshold the transition

is assumed to be on (and the spin state is deduced), if the number of detec-

tions is below the threshold the transition is off. An erroneous assignment of the

spin state is made when the photodetection counts are above the threshold even

though the transition is off and vice versa. The readout error is given by the

weighted probabilities of these events; denoting the individual errors eon and eoff

we have a total error of e = 1/2 (eoff + eon) in the case of equal spin populations.

In general, two sources contribute to readout error, both dependent on the du-

ration of the readout attempt, the binsize. On the one hand, the photodetection

obeys poissonian statistics and two distributions can be associated with the on

and off cases. Any overlap of the two distribution gives rise to an error pro-

portional to the overlap. Minimising this error, i.e. separating the distributions

requires increasing the binsize. On the other hand, finite spin lifetimes mean

that during some measurement attempts a spin flip occurs that can obscure the
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readout. Spin flips contribute to the area between the on/off distributions.

Any measurement should be short compared to the spin lifetime and smaller bin-

sizes decrease this type of error. Additionally, processes that shorten the natural

spin lifetime such as optical pumping can limit the fidelity further. Once the

statistics for spin dynamics and photon detection are known the threshold for

readout is chosen such that the overall error is minimised.

We mimic spin readout by switching the X1− transition of QD ‘Claude’ (sin-

gle QD, Chef 2 sample, zero external magnetic field) on and off resonance with

respect to the exciting laser and comparing photon statistics for the two cases.

This gives us the first type of error discussed above. Figure 7.12 a displays the

statistics for an excitation laser power at saturation. APD counts are recorded

on and off resonance with 10 µs resolution for a cumulative duration of 2 seconds.

The inset shows an exemplary timetrace where the trion transition is driven for

100 ms on resonance first and then 100 ms off resonance. The timetraces are

rebinned to 30 µs resolution for the histogram. APD dark counts have been

measured separately and are shown as well. The dashed curves are distributions

expected from poissonian statistics. In Fig. 7.12 b we plot the overlap of on/off

histograms vs. binsize for a range of powers from a tenth of saturation to close

to 200 times saturation. For a given bin size, we see the overlap decrease first as

the driving power and hence the QD emission rate is increased until it reaches

a minimum and increases for higher powers as the background rises while QD

emission saturates. Due to the finite sample size all on/off histograms separate

completely for larger bin sizes. Kinks and non-monotonous decay with bin size

are due to the discrete nature of photon counting.

Next, we include lifetime and spin pumping effects: From Eq. (7.6) and Fig.

7.11 we have a natural spin lifetime of T0→1 ∼ 140 ms. No spin pumping effects

are observed for spin down (state 1), but spin up (state 0) is pumped into the

down state when the readout laser is active. This is due to off-resonant (detuning

∆ = 2π×8 GHz) driving of a transition that pumps the spin efficiently from up to

down at a rate of γsf = 2π×0.49 MHz when on resonance with the spin-pumping

transition.

The results, see Fig. 7.13, are given for two excitation powers. Here, red corre-
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Figure 7.12: Signal-to-background and noise analysis of resonance fluorescence for
spin readout. Photodetection events are recorded with 10 µs resolution when the QD
transition is driven on and off resonance (see inset of a for exemplary time traces). a,
Histogram of photocounts per time of 30 µs for resonant driving (blue), off-resonant
driving (red) and no driving (black). b, Overlap of on-resonance and off-resonance
photodetection histograms as function of detection binsize for a series of excitation
powers.
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sponds to the readout error at saturation whereas green is for a fifth of saturation

power. We include the individual errors for spin up (up-pointing triangles) and

spin down (down-pointing triangles) and the average (filled circles). Fidelities

higher than 99 % can be reached within 20 µs at saturation and a peak fidelity

of 99.59 % is achieved in 40 µs. Slightly higher fidelities are possible at smaller

excitation powers, but come at a cost of significantly larger binsizes: we predict

99.73 % fidelity for a fifth of saturation and a binsize of 120 µs (see arrows in Fig.

7.13).
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Figure 7.13: Estimated spin readout error for a QDM with improved photon collec-
tion efficiency (corresponding to the efficiency obtained with the Chef 2 sample). The
QDM parameters, such as off-resonant spin pumping rate and spin lifetime, are from
measurements on the actual QDM sample. Spin pumping, spin lifetime and the his-
togram overlap from Fig. 7.12 contribute to the calculation. Red data is for a readout
power at saturation (s = 1), while the green data is for s = 0.2. Up-pointing triangles
give the error for spin up readout, down-pointing triangles for spin down readout, and
the solid circles represent the average error.

A promising approach to improve the readout fidelities further might be to opti-

mise parameters limiting QDM readout. In our case this is spin pumping of the

up spin on the order of ms. Increasing the parameter ∆ in Eq. (7.6) by a fac-

tor two (which can be achieved by increasing the tunneling interaction slightly)

would bring the maximum fidelity up to 99.9 %.

We note that all results here rely on a simple threshold method; more sophisti-

cated methods, such as maximum likelihood have been shown to greatly improve

readout fidelities [107]. Quantum error correction schemes typically assume read-

out errors on the order of 10−3, which can be satisfied even with the threshold
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methods.

7.9 Chapter outlook

In conclusion, we have observed spin-dependent quantum jumps in a QDM via

resonance fluorescence. The spin state of a single electron confined to one QD

of the vertically stacked QD pair is monitored by virtue of a molecular recycling

transition that is conditional on the electron spin state. The use of a QDM

eliminates the need to address the same transition for spin state manipulation and

readout, overcoming a main limitation of single QD qubits. While QDM molecules

have been investigated before, also with respect to spin readout, the combination

of this physical system with the high bandwidth of resonance fluorescence has

made single-shot readout possible. Our measurements with the QDM indicate

single-shot fidelities of ∼ 95% for measurement times of 250 µs, but with the

improved collection efficiency and signal-to-background ratio we extrapolate a

readout fidelity > 99.5% for a measurement time of 30 µs. Equally exciting,

the prospect of using single-shot readout in a verification scheme for distant spin

entanglement would decrease the measurement time by the inverse of the squared

combined collection/detection efficiency when compared to the use of single QDs.

For current collection efficiencies this time gain would be at least a factor of 1000.
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Chapter 8

Conclusions and outlook:
towards a small-scale quantum
network

Eight chapters on - how does this thesis fit together as a whole and where do we

go from here? In the introduction we outlined the vision of the quantum internet:

A quantum optical network of individual quantum dots, or better quantum dot

molecules, entangled through quantum interference of their single photons. The

smallest possible network would be just two remote spin qubits which can be

manipulated individually and entangled via two-photon interference.

Removing obstacles in the way of achieving this next step of a small-scale network

has provided the motivation throughout the thesis. We were concerned with two

issues mainly:

1. Photon quality. This was driven by the following question: Can we entan-

gle two QDs - with high fidelity - using photon interference? Splitting this

question into smaller parts we aimed to answer: How can we generate high

coherence single photons from a QD? What are the limits on coherence?

How do environmental dynamics affect the photon quality?

2. Spin readout. Single-shot readout was, out of the first five, the only

missing DiVincenzo criterium for spins in QDs at the start of this thesis

work. Can we overcome the limitation of laser backaction flipping the spin
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before its state is determined? What are the readout fidelities and how can

they be optimised?

The first point was investigated in Chapters 4,5 and 6 of this thesis. We set out to

systematically study the first- and second-order coherence of QD resonance fluo-

rescence in the previously unexplored regime of small Rabi frequencies, Ω . 1/T1.

We could report the direct observation of highly coherent single photon emission

- a somewhat novel feature in the solid-state community that dominates QD re-

search, despite being a standard topic in quantum optics textbooks. The emission

of subnatural linewidth single photons was detailed in the first part of Chapter 4

and is one of the main results of this thesis.

While this observation is a sign of negligible pure dephasing we still found marked

deviations from the properties predicted for an isolated two-level system. These

influences of the solid-state environment - spectral diffusion, exciton-phonon cou-

pling and Overhauser field dynamics - were explored in the second half of Chapter

4. One other influence on the QD optical transition, this time not a ‘natural’ but

laser-induced effect, was identified as an optically induced electric field in Chap-

ter 5.

The sensitivity of the QD transition to these additional interactions spell out a

serious challenge for the realisation of entanglement:

• Uncorrelated spectral diffusion for independent QDs reduces their spectral

overlap and hence limits photon interference probabilities.

• Uncorrelated Overhauser fields dephase independent spin qubits within the

inhomogeneous dephasing time of a few nanoseconds.

Characterising and quantifying the extent of these challenges is a first step. The

next important step is to minimise or to avoid them.

Chapter 6 detailed one approach to the photon interference part: relying on

coherent QD scattering locks the scattered photon’s frequency to that of the ex-

citing laser and avoids any pure dephasing. We used two-photon interference of

single QD emission to confirm that photons created this way are fundamentally

indistinguishable and envision that for entanglement purposes separate QDs are

addressed by the same laser. Of course, there are downsides to this scheme, most
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importantly the low excitation efficiency. A better solution would be to eradicate

spectral diffusion in the first place. . . Future work will pursue the two approaches.

A starting point for the reduction of spectral diffusion will be an active stabilisa-

tion of the QD transition.

Going to the second main issue of single-shot spin readout: For the simple optical

level structure of a singly charged QD there are limited resources to satisfy all

of the first five DiVincenzo criteria at once. In particular, spin initialisation and

optical spin rotations rely on excited states coupled strongly to both qubits basis

states. This translates to a balanced branching ratio of excited to ground state

transitions. Spin readout on the other hand requires, in the face of non-unity

probability of photon collection and detection, a recycling transition.

Since these opposing requirements cannot be satisfied for single QD we turned to

quantum dot molecules in Chapter 7. There, the level structure is far more com-

plex than the simple two-level system we considered all the way up to Chapter

8, but it allows for a spin-sensitive recycling transition.

The more complex level structures of QDMs gives rise to further options for co-

herent spin control and it is likely that QDMs will replace single QDs as the main

workhorse for QIP applications. This is evidenced by the ongoing research which

has enabled 2-qubits gates [42] and protected qubits states [44] already.

Distant spin entanglement remains the motivation for further work. This the-

sis provides solutions to some of the challenges we face along the road, but some

remain to be solved.

We finish this chapter and the thesis by listing a few of the challenges which will

be taken on next.

• Improving the collection efficiency. Total internal reflection at the semiconductor-

air interface limits outcoupling of photons into the collection optics to 1-

2%.We have employed solid immersion lenses to ameliorate this issue and

increased outcoupling efficiency to 6-7%. However, theoretical considera-

tions suggest that optimal index matching alone should allow an increase

in extraction to 30% [77] and with improved sample design the extraction

efficiency should approach 99% [190]. We will explore new sample designs
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following these proposals.

This technical improvement is particularly crucial if we want to verify spin-spin

entanglement. In the protocol of Duan et al. [153; 157] two-photon interference

and detection projects the qubits into entanglement. Hence the probability of

an entanglement event scales as the square of the collection/detection efficiency.

Then the spin states need to be measured to verify the entanglement. Using a

single QD as qubit host we only scatter 1-2 photons in the readout attempt so the

readout success rate for both qubit scales as the square of the collection/detection

efficiency again. Verified entanglement rates then go as the fourth power in total.

With our current system this translates to roughly one event every ten minutes.

If single-shot readout is available, however, the rate scales as the square only,

which would be a significant improvement. Entanglement rates could be further

increased using Cabrillo’s entanglement protocol [156] for example, but technical

requirements increase.

• Spin coherence and the Overhauser field. Long spin coherences have been

reported for frequency-domain measurements in combination with optical

feedback on the nuclear field [39]. The use of feedback with time-domain

spin rotations is still outstanding though. Further, dynamical decoupling

schemes, which have been applied very successfully for electrically defined

QDs [55] and NV centres [191], are an outstanding challenge as well.

• Efficient coherent scattering. Coherent scattering rates are 10-20 times

lower than for deterministic excitation schemes. It may be possible to com-

bine deterministic photon generation with coherent scattering: A very short

(picoseconds) optical pulse moves the population almost entirely into the

excited state and then a long weak pulse creates the two-level system co-

herences necessary for coherent scattering. This should keep the generation

process deterministic while still allowing coherent scattering to exist along-

side spontaneous emission.
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BB Goldberg, A Imamoglu, and MS Ünlü. Strong extinction of a far-field

laser beam by a single quantum dot. Nano letters, 7(9):2892–2896, 2007.

45

[92] JP Hadden, JP Harrison, AC Stanley-Clarke, L Marseglia, Y-LD Ho,

BR Patton, JL OBrien, and JG Rarity. Strongly enhanced photon col-

lection from diamond defect centers under microfabricated integrated solid

immersion lenses. Applied Physics Letters, 97(24):241901–241901, 2010. 46

182



REFERENCES

[93] Lucio Robledo, Lilian Childress, Hannes Bernien, Bas Hensen, Paul FA

Alkemade, and Ronald Hanson. High-fidelity projective read-out of a solid-

state spin quantum register. Nature, 477(7366):574–578, 2011. 46

[94] Tom D Milster. Chromatic correction of high-performance solid immersion

lens systems. Japanese journal of applied physics, 38(part 1):1777–1779,

1999. 46

[95] Khaled Karrai and Richard J Warburton. Optical transmission and reflec-

tion spectroscopy of single quantum dots. Superlattices and Microstructures,

33(5):311–337, 2003. 50

[96] Benito Alén, Florian Bickel, Khaled Karrai, Richard J Warburton, and

Pierre M Petroff. Stark-shift modulation absorption spectroscopy of single

quantum dots. Applied Physics Letters, 83(11):2235–2237, 2003. 51
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der, Sven Höfling, Martin Kamp, Chao-Yang Lu, and Jian-Wei Pan. On-

demand semiconductor single-photon source with near-unity indistinguisha-

bility. Nature Nanotechnology, 2013. 137

[178] L-M Duan and R Raussendorf. Efficient quantum computation with prob-

abilistic quantum gates. Physical Review Letters, 95(8):080503, 2005. 137

[179] K. Konthasinghe, M. Peiris, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q.

Ni, Z. C. Niu, C. K. Shih, and A. Muller. Field-field and photon-photon

192



REFERENCES

correlations of light scattered by two remote two-level inas quantum dots

on the same substrate. Physical Review Letters, 109(26):267402, 2012. 138

[180] Danny Kim, Sophia E. Economou, Ştefan C. Bădescu, Michael Scheib-
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