3,208 research outputs found

    On the expected γ\gamma-ray emission from nearby flaring stars

    Full text link
    Stellar flares have been extensively studied in soft X-rays (SXR) by basically every X-ray mission. Hard X-ray (HXR) emission from stellar superflares, however, have only been detected from a handful of objects over the past years. One very extreme event was the superflare from the young M-dwarf DG CVn binary star system, which triggered Swift/BAT as if it was a γ\gamma-ray burst (GRB). In this work, we estimate the expected γ\gamma-ray emission from DG CVn and the most extreme stellar flares by extrapolating from solar flares based on measured solar energetic particles (SEPs), as well as thermal and non-thermal emission properties. We find that ions are plausibly accelerated in stellar superflares to 100 GeV energies, and possibly up to TeV energies in the associated coronal mass ejections. The corresponding π0\pi^0-decay γ\gamma-ray emission could be detectable from stellar superflares with ground-based γ\gamma-ray telescopes. On the other hand, the detection of γ\gamma-ray emission implies particle densities high enough that ions suffer significant losses due to inelastic proton-proton scattering. The next-generation Cherenkov Telescope Array (CTA) should be able to probe superflares from M-dwarfs in the solar neighbourhood and constrain the energy in interacting cosmic rays and/or their maximum energy. The detection of γ\gamma-ray emission from stellar flares would open a new window for the study of stellar physics, the underlying physical processes in flares and their impact on habitability of planetary systems.Comment: 8 pages, 3 figures, 2 table

    Electron-Plasmon scattering in chiral 1D systems with nonlinear dispersion

    Get PDF
    We investigate systems of spinless one-dimensional chiral fermions realized, e.g., in the arms of electronic Mach-Zehnder interferometers, at high energies. Taking into account the curvature of the fermionic spectrum and a finite interaction range, we find a new scattering mechanism where high-energy electrons scatter off plasmons (density excitations). This leads to an exponential decay of the single-particle Green's function even at zero temperature with an energy-dependent rate. As a consequence of this electron-plasmon scattering channel, we observe the coherent excitation of a plasmon wave in the wake of a high-energy electron resulting in the buildup of a monochromatic sinusoidal density pattern.Comment: 5 pages, 3 figures; version as publishe

    Nonlocal ultrafast demagnetization dynamics of Co/Pt multilayers by optical field enhancement

    Get PDF
    The influence on ultrafast demagnetization dynamics of metallic nano-structured gratings deposited on thin films of magnetic Co/Pt multilayers is investigated by the time-resolved optical Kerr effect. Depending on the polarization of the pump pulse, a pronounced enhancement of the demagnetization amplitude is found. Calculation of the inhomogeneous optical field distribution due to plasmon interaction and time-dependent solutions of the coupled electron, lattice, and spin temperatures in two dimensions show good agreement with the experimental data, as well as giving evidence of non-local demagnetization dynamics due to electron diffusion.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt

    Student Evaluation Of A Digital Learning Game

    Get PDF
    Data from 294 post-graduate students studying business administration were analysed to determine perceptions toward digital learning games. This research can be used as a conceptual model of how to react to new methods of instruction. 25 subject (game) related and 21 tutor related attributes made up the course evaluation form. Preliminary findings suggest a Halo effect in form of student’s perception of the tutor being influenced by the subject, vice versa. Although the overall evaluation of both, game and tutor, were on average very positive, there were distinct differences between clusters

    Experimental evaluation of signal-to-noise in spectro-holography via modified uniformly redundant arrays in the soft x-ray and extreme ultraviolet spectral regime

    Get PDF
    We present dichroic x-ray lensless magnetic imaging by Fourier transform holography with an extended reference scheme via a modified uniformly redundant array (mURA). Holographic images of magnetic domains simultaneously generated by a single pinhole reference as well as by a mURA reference are compared with respect to the signal-to-noise ratio (SNR) as a function of exposure time. We apply this approach for spectro-holographic imaging of ferromagnetic domain patterns in Co/Pt multilayer films. Soft x-rays with wavelengths of 1.59 nm (Co L 3 absorption edge) and 20.8 nm (Co M 2,3 absorption edges) are used for image formation and to generate contrast via x-ray magnetic circular dichroism. For a given exposure time, the mURA-based holography allows to decouple the reconstruction SNR from the spatial resolution. For 1.59 nm wavelength, the reconstruction via the extended reference scheme shows no significant loss of spatial resolution compared to the single pinhole reference. In contrast, at 20.8 nm wavelength the single pinhole reveals some very intricate features which are lost in the image generated by the mURA, although overall a high-quality image is generated. The SNR-advantage of the mURA scheme is most notable when the hologram has to be encoded with few photons, while errors associated with the increased complexity of the reconstruction process reduce the advantage for high-photon-number experiments.BMBF, 05K13KT3, Verbundprojekt 05K2013 - DynaMaX: Messplatz für ultraschnelle Dynamik bei BESSY II. Teilprojekt
    corecore