96 research outputs found

    Influence of solute doping on the high-temperature deformation behavior of GaAs

    Get PDF
    The role of isovalent dopants in the high‐temperature deformation of GaAs has been studied in the temperature range 500–1150 °C. Additions of In, Sb, and B increase the critical resolved shear stress for deformation at a given strain rate and result in lowering the dislocation density of as‐grown liquid‐encapsulated Czochralski GaAs crystals. Phosphorus, because of its minor influence on the lattice strain, shows little enhancement of the yield stress. These results are consistent with a solute hardening model, in which the solute atom surrounded tetrahedrally by four Ga or As atoms comprise the hardening cluster. Codoping with In and Si hardens GaAs, but codoping with Si is less effective than the isovalent solutes In, Sb, and B, and produces softening at high temperatures. The effect of solutes on both dislocation nucleation and multiplication are reviewed here

    Physical Presence during Moral Action in Immersive Virtual Reality.

    Get PDF
    Research on morality has focused on differences in moral judgment and action. In this study, we investigated self-reported moral reasoning after a hypothetical moral dilemma was presented on paper, and moral reasoning after that very same dilemma was experienced in immersive virtual reality (IVR). We asked open-ended questions and used content analysis to determine moral reasoning in a sample of 107 participants. We found that participants referred significantly more often to abstract principles and consequences for themselves (i.e., it is against the law) after the paper-based moral dilemma compared to the IVR dilemma. In IVR participants significantly more often referred to the consequences for the people involved in the dilemma (i.e., not wanting to hurt that particular person). This supports the separate process theory, suggesting that decision and action might be different moral concepts with different foci regarding moral reasoning. Using simulated moral scenarios thus seems essential as it illustrates possible mechanisms of empathy and altruism being more relevant for moral actions especially given the physical presence of virtual humans in IVR

    Inactivation of DltA Modulates Virulence Factor Expression in Streptococcus pyogenes

    Get PDF
    D-alanylated lipoteichoic acid is a virtually ubiquitous component of gram-positive cell walls. Mutations in the dltABCD operon of numerous species exhibit pleiotropic effects, including reduced virulence, which has been attributed to increased binding of cationic antimicrobial peptides to the more negatively charged cell surface. In this study, we have further investigated the effects that mutating dltA has on virulence factor expression in Streptococcus pyogenes.Isogenic Delta dltA mutants had previously been created in two distinct M1T1 isolates of S. pyogenes. Immunoblots, flow cytometry, and immunofluorescence were used to quantitate M protein levels in these strains, as well as to assess their ability to bind complement. Bacteria were tested for their ability to interact with human PMN and to grow in whole human blood. Message levels for emm, sic, and various regulatory elements were assessed by quantitative RT-PCR. Cell walls of Delta dltA mutants contained much less M protein than cell walls of parent strains and this correlated with reduced levels of emm transcripts, increased deposition of complement, increased association of bacteria with polymorphonuclear leukocytes, and reduced bacterial growth in whole human blood. Transcription of at least one other gene of the mga regulon, sic, which encodes a protein that inactivates antimicrobial peptides, was also dramatically reduced in Delta dltA mutants. Concomitantly, ccpA and rofA were unaffected, while rgg and arcA were up-regulated.This study has identified a novel mechanism for the reduced virulence of dltA mutants of Streptococcus pyogenes in which gene regulatory networks somehow sense and respond to the loss of DltA and lack of D-alanine esterification of lipoteichoic acid. The mechanism remains to be determined, but the data indicate that the status of D-alanine-lipoteichoic acid can significantly influence the expression of at least some streptococcal virulence factors and provide further impetus to targeting the dlt operon of gram-positive pathogens in the search for novel antimicrobial compounds

    Natural solution to antibiotic resistance: bacteriophages ‘The Living Drugs’

    Get PDF

    NASA’S SUBSONIC JET TRANSPORT NOISE REDUCTION RESEARCH

    No full text
    Although new jet transport airplanes in today’s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA’s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3–8 % growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions.

    NASA's Subsonic Jet Transport Noise Reduction Research

    No full text
    Although new jet transport airplanes in today s fleet are considerably quieter than the first jet transports introduced about 40 years ago, airport community noise continues to be an important environmental issue. NASA s Advanced Subsonic Transport (AST) Noise Reduction program was begun in 1994 as a seven-year effort to develop technology to reduce jet transport noise 10 dB relative to 1992 technology. This program provides for reductions in engine source noise, improvements in nacelle acoustic treatments, reductions in the noise generated by the airframe, and improvements in the way airplanes are operated in the airport environs. These noise reduction efforts will terminate at the end of 2001 and it appears that the objective will be met. However, because of an anticipated 3-8% growth in passenger and cargo operations well into the 21st Century and the slow introduction of new the noise reduction technology into the fleet, world aircraft noise impact will remain essentially constant until about 2020 to 2030 and thereafter begin to rise. Therefore NASA has begun planning with the Federal Aviation Administration, industry, universities and environmental interest groups in the USA for a new noise reduction initiative to provide technology for significant further reductions

    Substratum-associated microbiota

    No full text
    Š 2020 Water Environment Federation. Highlights of new, interesting, and emerging research findings on substratum-associated microbiota covered from a survey of 2019 literature from primarily freshwaters provide insight into research trends of interest to the Water Environment Federation and others interested in benthic, aquatic environments. Coverage of topics on bottom-associated or attached algae and cyanobacteria, though not comprehensive, includes new methods, taxa new-to-science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, and bloom-forming and harmful algae. Coverage of bacteria, also not comprehensive, focuses on the ecology of benthic biofilms and microbial communities, along with the ecology of microbes like Caulobacter crescentus, Rhodobacter, and other freshwater microbial species. Bacterial topics covered also include metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Readers may use this literature review to learn about or renew their interest in the recent advances and discoveries regarding substratum-associated microbiota. Practitioner points: This review of literature from 2019 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Coverage of algae and cyanobacteria includes findings on new methods, taxa new to science, nutrient dynamics, auto- and heterotrophic interactions, grazers, bioassessment, herbicides and other pollutants, metal contaminants, and nuisance, bloom-forming and harmful algae. Coverage of bacteria includes findings on ecology of benthic biofilms and microbial communities, the ecology of microbes, metagenomics and metatranscriptomics, toxins and pollutants, bacterial pathogens and bacteriophages, and bacterial physiology. Highlights of new, noteworthy and emerging topics build on those from 2018 and will be of relevance to the Water Environment Federation and others interested in benthic, aquatic environments
    • …
    corecore