5,002 research outputs found

    Comment on "Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators"

    Get PDF
    In a recent Letter, Gaidarzhy et al. [1] claim to have observed evidence for "quantized displacements" of a high-order mode of a nanomechanical oscillator. We contend that the methods employed by the authors are unsuitable in principle to observe such states for any harmonic mode

    Quantum gears: a simple mechanical system in the quantum regime

    No full text
    Abstract. The quantum mechanics of a simple mechanical system is considered. A group of gears can serve as a model for several different systems such as an artifically constructed nanomechanical device or a group of ring molecules. It is shown that the classical motion of the gears in which the angular velocities are locked together does not correspond to

    High-Frequency Nanofluidics: An Experimental Study using Nanomechanical Resonators

    Full text link
    Here we apply nanomechanical resonators to the study of oscillatory fluid dynamics. A high-resonance-frequency nanomechanical resonator generates a rapidly oscillating flow in a surrounding gaseous environment; the nature of the flow is studied through the flow-resonator interaction. Over the broad frequency and pressure range explored, we observe signs of a transition from Newtonian to non-Newtonian flow at ωτ≈1\omega\tau\approx 1, where τ\tau is a properly defined fluid relaxation time. The obtained experimental data appears to be in close quantitative agreement with a theory that predicts purely elastic fluid response as ωτ→∞\omega\tau\to \infty

    Nonlinear response of a driven vibrating nanobeam in the quantum regime

    Full text link
    We analytically investigate the nonlinear response of a damped doubly clamped nanomechanical beam under static longitudinal compression which is excited to transverse vibrations. Starting from a continuous elasticity model for the beam, we consider the dynamics of the beam close to the Euler buckling instability. There, the fundamental transverse mode dominates and a quantum mechanical time-dependent effective single particle Hamiltonian for its amplitude can be derived. In addition, we include the influence of a dissipative Ohmic or super-Ohmic environment. In the rotating frame, a Markovian master equation is derived which includes also the effect of the time-dependent driving in a non-trivial way. The quasienergies of the pure system show multiple avoided level crossings corresponding to multiphonon transitions in the resonator. Around the resonances, the master equation is solved analytically using Van Vleck perturbation theory. Their lineshapes are calculated resulting in simple expressions. We find the general solution for the multiple multiphonon resonances and, most interestingly, a bath-induced transition from a resonant to an antiresonant behavior of the nonlinear response.Comment: 25 pages, 5 figures, submitted to NJ

    Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper box

    Get PDF
    We analyse the quantum dynamics of a micromechanical resonator capacitively coupled to a Cooper box. With appropriate quantum state control of the Cooper box, the resonator can be driven into a superposition of spatially separated states. The Cooper box can also be used to probe the environmentally-induced decoherence of the resonator superposition state.Comment: 4 pages, 3 figure

    Dynamics of a suspended nanowire driven by an ac Josephson current in an inhomogeneous magnetic field

    Full text link
    We consider a voltage-biased nanoelectromechanical Josephson junction, where a suspended nanowire forms a superconducting weak-link, in an inhomogeneous magnetic field. We show that a nonlinear coupling between the Josephson current and the magnetic field generates a Laplace force that induces a whirling motion of the nanowire. By performing an analytical and a numerical analysis, we demonstrate that at resonance, the amplitude-phase dynamics of the whirling movement present different regimes depending on the degree of inhomogeneity of the magnetic field: time independent, periodic and chaotic. Transitions between these regimes are also discussed.Comment: 7 pages, 5 figure

    Cooling Torsional Nanomechanical Vibration by Spin-Orbit Interactions

    Full text link
    We propose and study a spin-orbit interaction based mechanism to actively cool down the torsional vibration of a nanomechanical resonator made by semiconductor materials. We show that the spin-orbit interactions of electrons can induce a coherent coupling between the electron spins and the torsional modes of nanomechanical vibration. This coherent coupling leads to an active cooling for the torsional modes via the dynamical thermalization of the resonator and the spin ensemble.Comment: 4 pages, 3 figure

    Generation of Squeezed States of Nanomechanical Resonators by Reservoir Engineering

    Get PDF
    An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 104^4 to 105^5 and for support temperatures of T ≈\approx 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.Comment: 13 pages,9 figure

    Giant slip lengths of a simple fluid at vibrating solid interfaces

    Full text link
    It has been shown recently [PRL 102, 254503 (2009)] that in the plane-plane configuration a mechanical resonator vibrating close to a rigid wall in a simple fluid can be overdamped to a frozen regime. Here, by solving analytically the Navier Stokes equations with partial slip boundary conditions at the solid fluid interface, we develop a theoretical approach justifying and extending these earlier findings. We show in particular that in the perfect slip regime the above mentioned results are, in the plane-plane configuration, very general and robust with respect to lever geometry considerations. We compare the results with those obtained previously for the sphere moving perpendicularly and close to a plane in a simple fluid and discuss in more details the differences concerning the dependence of the friction forces with the gap distance separating the moving object (i.e., plane or sphere) from the fixed plane. Finally, we show that the submicron fluidic effect reported in the reference above, and discussed further in the present work, can have dramatic implications in the design of nano-electromechanical systems (NEMS).Comment: submitted to PRE (see also PRL 102, 254503 (2009)
    • …
    corecore